
Assessed	 Coursework	

Course	 Name	 NS3	
Coursework	 Number	 Summative	 Exercise	 2	

Deadline	 Time:	 9:00am	 Date:	 8	 March	 2013	
%	 Contribution	 to	 final	

course	 mark	
4%	

Solo	 or	 Group	 	 	 	 	 Solo	 	 Group	 	
Anticipated	 Hours	 4	

	
Submission	 Instructions	

	
Submit	 via	 Moodle,	 in	 a	 .tar.gz	 archive	 formatted	 as	
instructed	 in	 the	 NS3	 Lab	 4	 handout.	
	

Please	 Note:	 This	 Coursework	 cannot	 be	 Re-‐Done	
	

Code	 of	 Assessment	 Rules	 for	 Coursework	 Submission	

Deadlines	 for	 the	 submission	 of	 coursework	 which	 is	 to	 be	 formally	 assessed	 will	 be	 published	 in	 course	

documentation,	 and	 work	 which	 is	 submitted	 later	 than	 the	 deadline	 will	 be	 subject	 to	 penalty	 as	 set	 out	 below.	 	

The	 primary	 grade	 and	 secondary	 band	 awarded	 for	 coursework	 which	 is	 submitted	 after	 the	 published	 deadline	 will	
be	 calculated	 as	 follows:	

(i) in	 respect	 of	 work	 submitted	 not	 more	 than	 five	 working	 days	 after	 the	 deadline	
a. the	 work	 will	 be	 assessed	 in	 the	 usual	 way;	

b. the	 primary	 grade	 and	 secondary	 band	 so	 determined	 will	 then	 be	 reduced	 by	 two	 secondary	 bands	
for	 each	 working	 day	 (or	 part	 of	 a	 working	 day)	 the	 work	 was	 submitted	 late.	

(ii) work	 submitted	 more	 than	 five	 working	 days	 after	 the	 deadline	 will	 be	 awarded	 Grade	 H.	

Penalties	 for	 late	 submission	 of	 coursework	 will	 not	 be	 imposed	 if	 good	 cause	 is	 established	 for	 the	 late	 submission.	

You	 should	 submit	 documents	 supporting	 good	 cause	 via	 MyCampus.	 	

Penalty	 for	 non-‐adherence	 to	 Submission	 Instructions	 is	 2	 bands	

	

You	 must	 complete	 an	 “Own	 Work”	 form	 via	
https://webapps.dcs.gla.ac.uk/ETHICS	 for	 all	 coursework	

UNLESS	 submitted	 via	 Moodle	

NS3 Lab 4 – UDP Programming

Dr Colin Perkins
School of Computing Science

University of Glasgow
http://csperkins.org/teaching/ns3/

27 February 2013

Introduction

The laboratory sessions for Networked Systems 3 (NS3) will introduce you to net-
work programming in C on Unix/Linux systems. There are weekly labs for this
course, during which you will complete several exercises. These exercises will
build on your knowledge of C programming and pthreads from the Advanced Pro-
gramming 3 course last semester, and on the material in the NS3 lectures. There
are a mixture of formative and summative exercises. The formative exercises are
intended to give you practice in programming networked systems in C; they are not
assessed. The two summative exercises are assessed, and are worth a total of 20%
of the marks for this course.

This is NS3 lab 4, on UDP programming. It comprises one formative exercise
and one summative exercise. The formative exercise should be completed during
the timetabled laboratory session in week 8 of the semester. The summative exer-
cise that should be completed during the timetabled laboratory sessions in weeks 8
and 9 of the semester, and during other hours as necessary. This work is assessed,
and is worth 4% of the marks for this course.

Background: UDP

The user datagram protocol (UDP) provides an unreliable and connectionless data-
gram service to applications. It is primarily used by local-area request-response
protocols such as the DNS, or for applications such as voice-over-IP that prefer
timeliness to reliability. UDP behaviour stands in sharp contrast to TCP, which
provides a reliable, connection oriented, stream abstraction.

A UDP socket can be created using the socket() system call in the usual
manner, but specifying SOCK DGRAM as the socket type:

int fd = socket(AF_INET, SOCK_DGRAM, 0);

1

Once a UDP socket has been created, it should be bound to a known port if it is
expected to act as a server that sends and receives datagrams. This is done using the
bind() system call, in exactly the same was as for a TCP socket. The arguments
to bind() indicate the local address and port to which the socket should be bound.
Since UDP is connectionless, there is no need to call the listen(), accept(),
or connect() functions.

UDP datagrams can be transmitted using the sendto() function. This takes
as arguments a file descriptor representing the socket, a buffer of data to the trans-
mitted, the length of that buffer, and the addresses and port to which that buffer
should be sent. The destination address is specified as a struct sockaddr *,
and a corresponding size. If sending to a unicast address, this should be looked
up in the DNS using getaddrinfo() in much the same way that you look up
the address used in a TCP connect() (but taking just the first address returned),
and using this as the destination of the datagram. Since the destination address is
specified in the sendto() call, it is possible to send each datagram to a different
destination.

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr_in addr = ...;
...
if (sendto(fd, buffer, buflen, 0, (struct sockaddr *) &addr,

sizeof(addr)) < 0) {
// Error...

}

The recvfrom() function can be used to receive UDP datagrams. This
works in much the same way as read(), except that it also takes an empty ad-
dress structure (struct sockaddr *) that is filled in with source address and
port from the received datagram. This address can be used in a sendto() call to
send a reply. Each received datagram can come from a different source address.

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr addr;
socklen_t alen = sizeof(addr);
int rlen;
...
rlen = recvfrom(fd, buffer, buflen, 0, &addr, &alen);
if (rlen < 0) {
// Error...

}

A UDP socket must be closed in the usual way, once you have finished using
it, using the close() system call.

2

Formative Exercise 5: UDP Client/Server Example

The formative exercise for this lab demonstrates how to build the most simple
UDP-based client-server application. You should write two programs:

udp hello server The server should listen for datagrams on UDP port 5008.
It should read the first datagram received, print the contents of that datagram
to the screen, close the socket, then exit.

udp hello client Your client should send the text “Hello, world!” in a UDP
datagram to port 5008 of a host named on the command line, then it should
close the socket. The client should take the name of the machine on which
the server is running as its single command line argument (i.e., if the server
is running on machine bo720-1-01 you should run your client using the
command hello client bo720-1-01.

Run your client and server, and demonstrate that you can send the text “Hello,
world!” from one to the other. Try this with client and server running on the same
machine, and with them running on two different machines.

Background: Multicast

In addition to standard point-to-point (unicast) transmission, UDP can also be used
with the IP multicast service. Multicast groups are identified by IP addresses in the
range 224.0.0.0 to 239.255.255.255. IP addresses in this range differ from other
IP addresses in that they identify a group of receivers, rather than a single host. A
UDP datagram sent to a multicast address is delivered to all hosts that have joined
that group. A host may join a multicast group by calling the setsockopt()
function with the address of the group to join (this is done after binding to a port):

#include <netinet/in.h>
...

struct ip_mreq imr;

inet_pton(AF_INET, "224.0.0.22", &(imr.imr_multiaddr.s_addr));
imr.imr_interface.s_addr = INADDR_ANY;

if (setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&imr, sizeof(imr)) < 0) {

// Error...
}

Once a host has joined a multicast group, it will receiv datagrams sent to that
group address. A host does not need to join a group in order to send to that group.

Note that multicast addresses generally do not have DNS entries, so you must
specify them as raw IP addresses (using inet pton()) rather than looking them

3

up in the DNS using getaddrinfo(). Multicast addresses cannot be used with
TCP connections, since TCP is a point-to-point protocol, and only supports one
sender and one receiver.

A host can leave a multicast group by calling the setsockopt() function
with the IP DROP MEMBERSHIP option:

if (setsockopt(fd, IPPROTO_IP, IP_DROP_MEMBERSHIP,
&imr, sizeof(imr)) < 0) {

perror("Unable to leave group");
return 1;

}

Receivers should leave any multicast groups that they have joined before they
close() the underlying sockets.

Summative Exercise 2: Multicast Chat

The second summative exercise demonstrates how to build a simple UDP multicast
chat application. You should write two programs:

chirp The chirp client sends a chat message to the group. It is invoked with a
single command line argument containing the messages to be sent, for exam-
ple: chirp "hello world". The message to be sent must be enclosed
in quotes, else the shell will interpret it as several arguments to pass to the
chirp command. The maximum length message that should be supported is
1000 characters.

The chirp client will send a single datagram to multicast group 224.0.0.22
port 5010 (you do not need to join a multicast group to send to it). The
contents of that datagram should be the text “FROM” (without the quotes),
followed by a single space, your username (maximum length 16 characters),
then a single newline \n character. Following the newline is the text passed
as the command line argument, then another \n to signal end of message.
You can retrieve your username using the getlogin() function.

Once your chirp client has sent the datagram, it should close the socket and
exit.

chirp listener The server should listen for datagrams sent to multicast group
224.0.0.22 on UDP port 5010. It should read each datagram received, and
extract the username and message text. For each message, it should print the
date and time, a dash, the username, another dash, then the message (e.g.,
if the received datagram contains “FROM csp\nhello world\n”, print
something like “21-02-2012 22:49:05 - csp - hello world”).

Check that the contents of the message, and the username, contain printable
characters before displaying them, in case a chirp client is sending badly

4

formed datagrams (display a ? in place of any non-printable characters).
Ensure your listener program is robust to receiving other malformed packets,
and does not crash.

Test your chirp and chirp_listener programs, ensuring that you can
chat with other members of the class.

Submission

You should prepare an electronic copy of your source code and Makefile (do not
submit compiled binaries) archived as a .tar.gz file that expands into a directory
named after your 7-digit matriculation number followed by “-submission2”. For
example, if your matriculation number is 0301234, your archive should expand to
create a directory “0301234-submission2” with your files inside. You can create
the archive using a command such as:

tar cvzf 0301234-submission2.tar.gz 0301234-submission2/

Ask one of the lab demonstrators if you are unsure how to create the archive.
If your archive is formatted correctly, you should see something like the following
when running the tar ztf command:

$ tar ztf 0301234-submission2.tar.gz
0301234-submission2/
0301234-submission2/Makefile
0301234-submission2/chirp.c
0301234-submission2/chirp_listener.c
$

(the 0301234-submission2/ prefix shows that the archive expands into a sub-
directory with the appropriate name for this matriculation number).

This work is assessed, and is worth 4% of the marks for this course. Submis-
sions should be made via Moodle. The deadline for submissions is 9:00am on 8
March 2013. As per the Code of Assessment policy regarding late submissions,
submissions will be accepted for up to 5 working days beyond this due date. Any
late submissions will be marked as if submitted on time, yielding a band value be-
tween 0 and 22; for each working day the submission is late, the band value will be
reduced by 2. Submissions received more than 5 working days after the due date
will receive an H (band value of 0). Submissions that are not made via Moodle, or
that are in archives which do not meet the above guidelines will be penalised two
bands. This penalty will be applied in addition to any late submission penalty.

5

