
Assessed	 Coursework	

Course	 Name	 NS3	
Coursework	 Number	 Summative	 Exercise	 1	

Deadline	 Time:	 9:00am	 Date:	 27	 February	 2013	
%	 Contribution	 to	 final	

course	 mark	
16%	

Solo	 or	 Group	 	 	 	 	 Solo	 	 Group	 	
Anticipated	 Hours	 16	

	
Submission	 Instructions	

	
Submit	 via	 Moodle,	 in	 a	 .tar.gz	 archive	 formatted	 as	
instructed	 in	 the	 NS3	 Lab	 3	 handout.	
	

Please	 Note:	 This	 Coursework	 cannot	 be	 Re-‐Done	
	

Code	 of	 Assessment	 Rules	 for	 Coursework	 Submission	

Deadlines	 for	 the	 submission	 of	 coursework	 which	 is	 to	 be	 formally	 assessed	 will	 be	 published	 in	 course	

documentation,	 and	 work	 which	 is	 submitted	 later	 than	 the	 deadline	 will	 be	 subject	 to	 penalty	 as	 set	 out	 below.	 	

The	 primary	 grade	 and	 secondary	 band	 awarded	 for	 coursework	 which	 is	 submitted	 after	 the	 published	 deadline	 will	
be	 calculated	 as	 follows:	

(i) in	 respect	 of	 work	 submitted	 not	 more	 than	 five	 working	 days	 after	 the	 deadline	
a. the	 work	 will	 be	 assessed	 in	 the	 usual	 way;	

b. the	 primary	 grade	 and	 secondary	 band	 so	 determined	 will	 then	 be	 reduced	 by	 two	 secondary	 bands	
for	 each	 working	 day	 (or	 part	 of	 a	 working	 day)	 the	 work	 was	 submitted	 late.	

(ii) work	 submitted	 more	 than	 five	 working	 days	 after	 the	 deadline	 will	 be	 awarded	 Grade	 H.	

Penalties	 for	 late	 submission	 of	 coursework	 will	 not	 be	 imposed	 if	 good	 cause	 is	 established	 for	 the	 late	 submission.	

You	 should	 submit	 documents	 supporting	 good	 cause	 via	 MyCampus.	 	

Penalty	 for	 non-‐adherence	 to	 Submission	 Instructions	 is	 2	 bands	

	

You	 must	 complete	 an	 “Own	 Work”	 form	 via	
https://webapps.dcs.gla.ac.uk/ETHICS	 for	 all	 coursework	

UNLESS	 submitted	 via	 Moodle	

NS3 Lab 3 – Web Server

Dr Colin Perkins
School of Computing Science

University of Glasgow
http://csperkins.org/teaching/ns3/

23 January 2013

Introduction

The laboratory sessions for Networked Systems 3 (NS3) will introduce you to net-
work programming in C on Unix/Linux systems. There are weekly labs for this
course, during which you will complete several exercises. These exercises will
build on your knowledge of C programming and pthreads from the Advanced Pro-
gramming 3 course last semester, and on the material in the NS3 lectures. There
are a mixture of formative and summative exercises. The formative exercises are
intended to give you practice in programming networked systems in C; they are not
assessed. The two summative exercises are assessed, and are worth a total of 20%
of the marks for this course.

This is NS3 lab 3, an exercise to build a web server in C. It comprises one sum-
mative exercise that should be completed during the timetabled laboratory sessions
in weeks 3–7 of the semester, and during other hours as necessary. This work is
assessed, and is worth 16% of the marks for this course.

The first version of your server will support only the minimum parts of HTTP
required to send a single response to the client; as you proceed further through the
exercise you will add more HTTP features, and add support for multiple requests
and multiple simultaneous clients. You should attempt all parts of this exercise.
It is recommended that you read this entire handout carefully, and think carefully
about – and plan – your system design, before you start coding.

The HyperText Transport Protocol

A web browser uses the HyperText Transport Protocol (HTTP) to retrieve pages
from a web server. The browser makes a TCP/IP connection to the web server,
sends an HTTP request for the requested web page over that connection, reads the
response back, and then displays the page. Both HTTP requests and responses are
text-based, making the network protocol relatively straight-forward to understand.

1

An HTTP request comprises a single line command (the “method”), followed
by one or more header lines containing additional information. To retrieve a page,
a web browser uses the GET method, specifying the page to retrieve and the ver-
sion of the HTTP protocol used (the current version is HTTP/1.1). For example, a
browser would send the method GET /index.html HTTP/1.1 to retrieve the
page /index.html from a server. The GET request must be followed by a header
to specify the name of the web site, for example Host: www.gla.ac.uk (in
case there are several sites hosted on the same server). The headers are followed
with a blank line, to indicate the end of the request. For example, to fetch the main
University web page (http://www.gla.ac.uk/index.html), a browser
could make a TCP/IP connection to www.gla.ac.uk port 80, and send the fol-
lowing request:

GET /index.html HTTP/1.1
Host: www.gla.ac.uk

Note that each line ends with a carriage return (‘\r’) followed by a new line
(‘\n’), and the whole request is terminated by a blank line (i.e., a line containing
nothing but the \r\n end of line marker). The example above is a minimal HTTP
request. A web browser will usually include many other header lines, in addition
to the Host: header, to control the connection, indicate support for particular file
formats and languages, convey cookies, and so on.

On receiving an HTTP request for a web page that exists, a web server will re-
ply with a HTTP/1.1 200 OK response, followed by several more header lines
providing information about the response, a blank line, and then the body of the
page. The headers lines should include a Content-Length: header, which
specifies the size of the body of the page in bytes. As with the request, each header
line ends with a carriage return followed by a new line, and the headers are sepa-
rated from the body with a blank line. An example of the type of response that is
sent follows (“...” indicates that some text has been elided):

HTTP/1.1 200 OK
Date: Tue, 12 Jan 2010 11:18:30 GMT
Server: Apache/1.3.34 (Unix) PHP/4.4.2
Last-Modified: Tue, 12 Jan 2010 09:59:31 GMT
ETag: "1a-3d4e-4b4c4803"
Accept-Ranges: bytes
Content-Length: 15694
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
...
</body>
</html>

2

In this example, the “Content-Length:” is 15694 bytes, meaning that there are
exactly 15694 bytes in the body (starting with the “<” of the “<!DOCTYPE” line,
and finishing with the “>” of the “</html>” line.

If a request is made for a non-existing file, the server will respond with a 404
“file not found” error. This will have a “Content-Type:” header of “text/html”, and
the body of the response contains the error page to be displayed to the user.

HTTP/1.1 404 Not Found
Date: Tue, 20 Jan 2009 10:31:56 GMT
Server: Apache/2.0.46 (Scientific Linux)
Content-Length: 300
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>404 Not Found</title>
...
</body>
</html>

Other types of response are possible, distinguished by the numeric code in the
first line of the response.

Summative Exercise 1: A Simple Web Server

The aim this exercise is to write a simple web server. The web server should bind
to port 8080 (access to port 80 is restricted to software installed by the systems
administrator, so we’ll use port 8080 for this exercise), listen for HTTP requests
sent by a web browser, and return appropriate responses to the client (either the
web page requested, or an error message).

Basic Connection Handling

On accepting a connection from the client, your server should parse the request.
The first line of the request (up to the initial \r\n) determines the type of request.
If the request begins GET followed by a filename and HTTP/1.1 then you should
parse that request to retrieve the name of the file requested. The filename should
be interpreted as being relative to the directory in which your server was started
(i.e., if the server was run from directory /users/staff/csp and received
the request GET /index.html HTTP/1.1, it would return the contents of
/users/staff/csp/index.html). Your server should also check the value
of the Host:HTTP header sent by the client, to ensure it matches the current host-
name (use the gethostname() function to find the hostname; be sure to check
both hostname and hostname.dcs.gla.ac.uk). After parsing the request to determine
the filename, and checking the Host: header, your server should respond with the

3

appropriate HTTP headers, followed by the data (the contents of the file). It should
then close the connection.

If the hostname matches, and the requested file exists, a success (“200 OK”)
response should be sent, followed by the contents of the requested file, then the
connection should be closed. An example of a minimal successful response, re-
turning an HTML page, is as follows:

HTTP/1.1 200 OK
Content-Type: text/html
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
...

(the “...” indicates that the output has been truncated in these notes – your
server should return a complete web page). The HTTP header lines and the blank
file following them must be generated by the server for each page: only the HTML
page content is read from the file.

If the requested file doesn’t exist, a “404 File Not Found” response should be
generated. An example “404 File Not Found” response is as follows (the head-
ers indicate that an error has occurred, body of the response is displayed by the
browser).

HTTP/1.1 404 Not Found
Content-Type: text/html
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title> 404 Not Found </title>
</head>
<body>
<p> The requested file cannot be found. </p>
</body>
</html>

If the hostname of the server doesn’t match the Host: header, if the Host:
header is not present, if the request does not start with GET, or if your server doesn’t
understand the request for some other reason, you should send a “400 Bad Request”

4

response. If your server fails for some other reason, it should send a “500 Internal
Server Error” response. Note that the HTTP standard requires the method (“GET”)
to be in upper case, but the other header lines are case insensitive.

The first line of the response indicates the version of HTTP used (HTTP/1.1)
and if the request succeeded (200 OK) or failed (e.g., 404 Not Found). This
is followed by several header lines giving information about the response, a blank
line, and the actual data requested. Two headers are essential: Content-Type:
tells the browser the format of the data – the first version of your server should use
text/html for everything – and Connection: close tells the client that
you will close the connection after sending the data.

Write a simple index.html file, and test your server by retrieving this file us-
ing a web browser of your choice. The URL you need to give to your browser will
depend on the host you’re using. For example, if you are using host bo720-1-01,
connect to http://bo720-1-01.dcs.gla.ac.uk:8080/index.html.
Check that your server correctly responds to requests for both valid and non-
existing pages, and that you can see your test page displayed in the browser.

Handling Multiple Sequential Connections

You will recall that the accept() function returns a file descriptor for the newly
open connection, leaving the file descriptor of the listening socket untouched. A
server may therefore accept a new connection, read the request, send its response,
and close the connection, all without disturbing the listening socket. Extend your
web server to use this feature to accept and serve multiple connections, one after the
other, rather than exiting after serving a single connection. Don’t forget to increase
the backlog in the listen() call, so multiple connections can be waiting.

Write a simple web site, comprising multiple HTML pages, for your server to
host. Browse this site using your favourite web browser to check that your server
correctly responds to multiple requests.

Specifying the Content Type

Extend your website to include some images, in both JPEG and GIF format, linked
from the HTML pages. To make the browser recognise these images, you’ll need
to include an appropriate Content-Type: header in the response sent by your
server. The Content-Type: should be chosen according to the extension of the
filename:

Filename: Content-Type:
∗.html, ∗.htm Content-Type: text/html
∗.txt Content-Type: text/plain
∗.jpg, ∗.jpeg Content-Type: image/jpeg
∗.gif Content-Type: image/gif
(unknown) Content-Type: application/octet-stream

5

You’ll need to parse the filename, to determine the extension, and then fill in
the Content-Type: appropriately when constructing your response.

Handling Multiple Requests per Connection

Forcing a web browser to open a new TCP connection for each request is inef-
ficient when multiple files are retrieved from a single web server. To avoid this
inefficiency, HTTP allows several requests to be sent on a single connection. If
the server does not include a Connection: close header in its response, the
client can keep the connection open, and may send additional HTTP requests to
the server. To allow the client to distinguish data from multiple requests, the server
must include a Content-Length: header specifying the size of each response’s
data in bytes. You can retrieve the size of a file using the fstat() function:

#include <sys/stat.h>
...
struct stat fs;
int fd = open(filename, O_RDONLY);
...
if (fstat(fd, &fs) == -1) {

// Error...
}
printf("file size = %d\n", fs.st_size);

Update your web server to support multiple requests per connection, only clos-
ing the connection when the client does so (the read() function will return zero
when the connection is closed). Demonstrate that this works using a standard web
browser by printing details of each request handled by the server.

Handling Multiple Connections in Parallel

Extend your web server to accept multiple connections in parallel. This should im-
prove its scalability and response time on multicore systems, and on systems with
relatively slow disks compared to the speed of their network connection. There are
two parts to this task: introducing concurrency to your web server by starting a
new thread for each connection, and then extending the server with a thread pool,
to hide thread creation overheads. Both parts should be implemented using the
pthreads API functions.

One thread per connection

Introduce concurrency by extending your server so that it starts a new thread to pro-
cess each network connection accepted on a socket. That is, when the accept()
function completes, start a new thread to process the newly accepted connection.

6

The new thread should accept the file descriptor for the new connection as a pa-
rameter in the pthread_create() call. Once created, the thread will process
HTTP requests until the connection is closed by the client, then it will close the
connection socket, and exit. The main thread should remain open and accepting
new connections.

Test your system to demonstrate that it can successfully handle multiple con-
nections in parallel. A web browser should open multiple connections to a site
if you have enough content for it to fetch. Create a web page containing sev-
eral (at least 10) images, and test concurrent browsing using this page (print the
thread identifier, returned by pthread_self() and filename when returning a
response, to shows that it’s working in parallel).

Thread pool

Starting a new thread for each connection can be inefficient, since threads take
some time to start. A more scalable approach creates a pool of worker threads
before accepting any connections, and passes each new connection to the next free
thread in the pool. Such a system comprises a single controller thread, with a pool
of worker threads. The controller maintains a list of workers, along with a state
variable for each indicating if it is busy of idle. Newly accepted connections are
passed to the first idle worker in the list, with new connections not being accepted
until there is an idle worker thread.

Implement such a system using pthreads to create the worker threads. Take
care to provide appropriate locking when manipulating condition variables shared
between controller and workers. Ensure your workers block on the condition vari-
able while waiting for new work, rather than continually polling. Test your system,
to demonstrate that it works correctly.

Submission

Your server must be written in C, and must run on the Linux machines in the level
3 laboratory. You are required to write a simple Makefile to compile your code,
rather than running the compiler by hand. You are also strongly advised to enable
all compiler warnings (at minimum, use gcc -W -Wall), and to fix your code
so it compiles without warnings. Compiler warnings highlight code which is legal,
but almost certainly doesn’t do what you think it does. Use them to help you find
problems.

You should prepare an electronic copy of your source code and Makefile (do
not submit compiled binaries) archived as a .tar.gz file that expands into a di-
rectory named after your 7-digit matriculation number followed by “-submission1”.
For example, if your matriculation number is 0301234, your archive should expand
to create a directory “0301234-submission1” with your files inside. You can create
the archive using a command such as:

7

tar cvzf 0301234-submission1.tar.gz 0301234-submission1/

Ask one of the lab demonstrators if you are unsure how to create the archive.
If your archive is formatted correctly, you should see something like the following
when running the tar ztf command:

$ tar ztf 0301234-submission1.tar.gz
0301234-submission1/Makefile
0301234-submission1/web-server.c
$

(the 0301234-submission1/ prefix shows that the archive expands into a sub-
directory with the appropriate name for this matriculation number).

This work is assessed, and is worth 16% of the marks for this course. Submis-
sions should be made via Moodle. The deadline for submissions is 9:00am on 27
February 2013. As per the Code of Assessment policy regarding late submissions,
submissions will be accepted for up to 5 working days beyond this due date. Any
late submissions will be marked as if submitted on time, yielding a band value be-
tween 0 and 22; for each working day the submission is late, the band value will be
reduced by 2. Submissions received more than 5 working days after the due date
will receive an H (band value of 0). Submissions that are not made via Moodle, or
that are in archives which do not meet the above guidelines will be penalised two
bands. This penalty will be applied in addition to any late submission penalty.

8

