
NS3 Lab 2 – TCP Client/Server Programming in C

Dr Colin Perkins

School of Computing Science

University of Glasgow

http://csperkins.org/teaching/ns3/

16 January 2013

Introduction

The laboratory sessions for Networked Systems 3 (NS3) will introduce you to net-

work programming in C on Unix/Linux systems. There are weekly labs for this

course, during which you will complete several exercises. These exercises will

build on your knowledge of C programming and pthreads from the Advanced Pro-

gramming 3 course last semester, and on the material in the NS3 lectures. There

are a mixture of formative and summative exercises. The formative exercises are

intended to give you practice in programming networked systems in C; they are not

assessed. The two summative exercises are assessed, and are worth a total of 20%

of the marks for this course.

This is NS3 lab 2, a further introduction to TCP client/server programming

in C. It comprises three formative exercises, and should be completed during the

timetabled laboratory session in week 2 of the semester, and outside the lab over

the following week. It it expected that these exercises will take a total of around 4

hours to complete, with Formative Exercise 2 comprising the majority of the coding

time (Formative Exercises 3 and 4 should require only very minor changes to the

code written for Formative Exercise 2, if you have structured your code correctly).

This work is not assessed, but is important preparation for the summative exercises

later in the course.

Formative Exercise 2: TCP Date/Time Server

The second formative exercise introduces you to simple application-layer network

protocols. You should write three programs:

dt server The server should listen on TCP port 5001 for incoming connections.

It should accept a connection, read and process a request, and send a response

to the client. There are two types of request that can be received:

1

http://csperkins.org/teaching/ns3/


DATE On receiving the text “DATE” (without the quotes) followed by a

carriage return and new line (“\r\n”), the server should send the current

date back to the client, followed by a carriage return and new line. The

standard library functions declared in the <time.h> header can be

used to get and format the date.

TIME On receiving the text “TIME” (without the quotes) followed by a

carriage return and new line (“\r\n”), the server should send the current

time back to the client, followed by a carriage return and new line. The

standard library functions declared in the <time.h> header can be

used to get and format the time.

After sending the response to the client, the server should close the connec-

tion, and exit.

d client This client should connect to TCP port 5001 of a host named on the

command line, and send the text “DATE\r\n” (without the quotes). After

sending the request, the client should read and print the response, close the

connection, and exit.

t client This client should connect to TCP port 5001 of a host named on the

command line, and send the text “TIME\r\n” (without the quotes). After

sending the request, the client should read and print the response, close the

connection, and exit.

Run your server, and demonstrate that it correctly responds to requests from

the two clients.

As before, you are required to write a simple Makefile to compile your code,

rather than running the compiler by hand. You are also strongly advised to enable

all compiler warnings (at minimum, use gcc -W -Wall -Werror), and to fix

your code so it compiles without warnings. Compiler warnings highlight code

which is legal, but almost certainly doesn’t do what you think it does. Use them to

help you find problems.

Formative Exercise 3: Handling Multiple Requests

A server that exits after processing a single request is not especially useful. Extend

the server you wrote in Formative Exercise 2, so that it loops, processing multiple

requests from the same connection, until the client closes the connection.

Modify the d_client and t_client programs you wrote in Exercise 2 so

that rather than exit after sending one request, they loop sending repeated requests

to the server on the same connection. Each request should be sent a few seconds

after the previous, and each response from the server should be printed immediately

it is received. Once they have sent 10 requests, and printed 10 responses, these

clients should close the connection, and exit.

2



Test your extended dt_server with each client in turn, to demonstrate that

it can processes multiple requests.

Formative Exercise 4: A Multi-threaded Server

There are two ways of handling multiple simultaneous connections to a server:

the server may synchronously multiplex several connections using the select()

system call, or it may asynchronously manage the connections using multiple

threads. In this Formative Exercise, you will build a server that multiplexes several

connections using threads, since this is the most scalable approach for multicore

systems.

Write a program t_dt_server, based on the dt_server that you wrote

for Formative Exercise 3. This new server should start a thread for each connection

it accepts, and pass the file descriptor for the connection to that thread. Each thread

should process the requests for the given connection, and exit when the connection

is closed. The server should keep listening on the original socket, accepting an

arbitrary number of new connections.

Test your server by allowing running severals clients at once, using a mixture

of d_client and t_client, all connected to the same server. Demonstrate that

your server correctly responds to requests from each client, and that it doesn’t mix

up responses to different requests. Demonstrate what happens when large numbers

of clients connect to the server at once. Demonstrate that the server continues to

work once the initial set of clients have completed and closed their connections to

the server, and new connections are opened by later clients.

3


