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Tutorial Outline

• Review of lectured material

• Key points

• Discussion
• OpenCL

• Future directions
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Review of Lectured Material

• Heterogeneous instruction set systems

• Heterogeneous multi-kernel systems – Helios

• Main core with heterogenous offload
• Graphics offload hardware – GPGPU

• Programming model

• OpenCL

• Integration with operating systems

• Heterogenous virtual machines – Hera JVM

• Hybrid models – Accelerator
• Lazy encoding of SIMD-style operations and JIT compilation into type 

system
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Key Points

• Increasing heterogeneity of hardware

• Programming models are complex
• Too limited to run a full operating system

• Too different to effectively run standard programming languages

• OpenCL-style offload model performs well, but is 
complex to program

• Attempts to hide complexity in VM have had mixed 
success
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Discussion

• What is complexity versus performance trade-off 
in OpenCL – how does this limit usefulness?

• How can SIMD-style processing be more cleanly 
incorporated into modern languages?

• Is the embedded DSL approach of Accelerator a 
set in the right direction, or is the complexity of 
the VM excessive?

• How to use heterogenous processing resources?
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Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi Sidd Puri Jose Oglesby
Microsoft Research
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Abstract
GPUs are difficult to program for general-purpose uses. Program-
mers can either learn graphics APIs and convert their applications
to use graphics pipeline operations or they can use stream program-
ming abstractions of GPUs. We describe Accelerator, a system that
uses data parallelism to program GPUs for general-purpose uses
instead. Programmers use a conventional imperative programming
language and a library that provides only high-level data-parallel
operations. No aspects of GPUs are exposed to programmers. The
library implementation compiles the data-parallel operations on the
fly to optimized GPU pixel shader code and API calls. We describe
the compilation techniques used to do this. We evaluate the effec-
tiveness of using data parallelism to program GPUs by providing
results for a set of compute-intensive benchmarks. We compare
the performance of Accelerator versions of the benchmarks against
hand-written pixel shaders. The speeds of the Accelerator versions
are typically within 50% of the speeds of hand-written pixel shader
code. Some benchmarks significantly outperform C versions on a
CPU: they are up to 18 times faster than C code running on a CPU.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers

General Terms Measurement, Performance, Experimentation,
Languages

Keywords Graphics processing units, data parallelism, just-in-
time compilation

1. Introduction
Highly programmable graphics processing units (GPUs) became
available in 2001 [10] and have evolved rapidly since then [15].
GPUs are now highly parallel processors that deliver much higher
floating-point performance for some workloads than comparable
CPUs. For example, the ATI Radeon x1900 processor has 48 pixel
shader processors, each of which is capable of 4 floating-point op-
erations per cycle, at a clock speed of 650 MHz. It has a peak
floating-point performance of over 250 GFLOPS using single-
precision floating-point numbers, counting multiply-adds as two
FLOPs. GPUs have an explicitly parallel programming model and
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their performance continues to increase as transistor counts in-
crease.

The performance available on GPUs has led to interest in using
GPUs for general-purpose programming [16, 8]. It is difficult,
however, for most programmers to program GPUs for general-
purpose uses.

In this paper, we show how to use data parallelism to program
GPUs for general-purpose uses. We start with a conventional im-
perative language, C# (which is similar to Java). We provide a li-
brary that implements an abstract data type providing data-parallel
arrays; no aspects of GPUs are exposed to programmers. The li-
brary evaluates the data-parallel operations using a GPU; all other
operations are evaluated on the CPU. For efficiency, the library
does not immediately perform data-parallel operations. Instead, it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls.

Data-parallel arrays only provide aggregate operations over en-
tire input arrays. The operations are a subset of those found in lan-
guages like APL and include element-wise arithmetic and compar-
ison operators, reduction operations (such as sum), and transfor-
mations on arrays. Data-parallel arrays are functional: each oper-
ation produces a new data-parallel array. Programmers must ex-
plicitly convert back and forth between conventional arrays and
data-parallel arrays. The lazy compilation is typically done when
a program converts a data-parallel array to a normal array.

Compiling data-parallel operations lazily to a GPU allows us to
implement the operations efficiently: the system can avoid creat-
ing large numbers of temporary data-parallel arrays and optimize
the creation of pixel shaders. It also allows us to avoid exposing
GPU details to programmers: the system manages the use of GPU
resources automatically and amortizes the cost of accessing graph-
ics APIs. Compilation at run time also allows the system to handle
properties and features that vary across GPU manufacturers and
models.

We have implemented these ideas in a system called Acceler-
ator. We evaluate the effectiveness of the approach using a set of
benchmarks for compute-intensive tasks such as image processing
and computer vision, run on several generations of GPUs from both
ATI and NVidia. We implemented the benchmarks in hand-written
pixel shader assembly for GPUs, C# using Accelerator, and C++ for
the CPU. The C# programs, including compilation overhead, are
typically within 2×of the speed of the hand-written pixel shader
programs, and sometimes exceed their speeds. The C# programs,
like the hand-written pixel shader programs, often outperform the
C++ programs (by up to 18×).

Prior work on programming GPUs for general-purpose uses ei-
ther targets the specialized GPU programming model directly or
provides a stream programming abstraction of GPUs. It is diffi-
cult to target the GPU directly. First, programmers need to learn
the graphics programming model, which is specialized to the set of
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