
Transactions

Advanced Operating Systems
Tutorial 6

Tutorial Outline

• Review of lectured material

• Key points

• Discussion
• Transactions for managing concurrency

• Transactions vs. message passing

2

Review of Lectured Material

• Concepts of transactions
• ACID properties

• Concurrent execution

• Possible to compose transactions

• Implementation challenges
• Controlling I/O operations

• Controlling memory access – rollback and recovery

• Implementation using monadic concepts

• Integration into Haskell

• Integration challenges for other languages

3

Key Points

• Understanding of the concepts of transactions

• Understanding of implementation techniques in
functional languages

• Awareness of practical challenges

4

Discussion: Transactions

• T. Harris, S. Marlow, S. Peyton Jones and M. Herlihy,
“Composable Memory Transactions”, CACM, 51(8),
August 2008. DOI:10.1145/1378704.1378725

• Is transactional memory a realistic technique?

• Do its requirements for a purely functional language,
with controlled I/O, restrict it to being a research toy?

• How much benefit can be gained from transactional
memory in more traditional languages?

5

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 91

DOI:10.1145/1378704.1378725

Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source
of concern is that even correctly implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a concurrency model,
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that
our programs will go faster when we buy a next- generation
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU
will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems that are reliable
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.23 Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered
several shortcomings. Firstly, it did not prevent transactional
code from bypassing the STM interface and accessing data
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems
did not provide a convincing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following
contributions:

We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we
guarantee “strong atomicity”15 in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer
does not have to identify the condition which will
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orElse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing
compiler for Concurrent Haskell; the STM enhancements
were incorporated in the GHC 6.4 release in 2005. Further
examples and a programmer-oriented tutorial are also
available.19

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
a qualitative improvement in language support for modular
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an
earlier paper with the same title.9 Since then there has been
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

1_CACM_V51.8.indb 91 7/21/08 10:13:41 AM

http://dx.doi.org/10.1145/1378704.1378725
http://dx.doi.org/10.1145/1378704.1378725

Discussion: Transactions vs. Messages

• Two very different approaches to concurrency offered
by transactions and message passing

• Conceptual purity vs. engineering pragmatics?
• Message passing is intuitive, easy to integrate into existing systems,

but doesn’t solve the problem of composition?

• Transactions are theoretically elegant, but cannot be integrated into
real-world systems?

• How should future systems be designed?

• Are we still missing the right programming model for
massively concurrent systems?

6

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 91

DOI:10.1145/1378704.1378725

Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source
of concern is that even correctly implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a concurrency model,
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that
our programs will go faster when we buy a next- generation
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU
will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems that are reliable
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.23 Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered
several shortcomings. Firstly, it did not prevent transactional
code from bypassing the STM interface and accessing data
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems
did not provide a convincing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following
contributions:

We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we
guarantee “strong atomicity”15 in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer
does not have to identify the condition which will
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orElse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing
compiler for Concurrent Haskell; the STM enhancements
were incorporated in the GHC 6.4 release in 2005. Further
examples and a programmer-oriented tutorial are also
available.19

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
a qualitative improvement in language support for modular
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an
earlier paper with the same title.9 Since then there has been
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

1_CACM_V51.8.indb 91 7/21/08 10:13:41 AM

68 COMMUNICATIONS OF THE ACM | SEPTEMBER 2010 | VOL. 53 | NO. 9

contributed articles

ERLANG IS A concurrent programming language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we’ve seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to
multicore computers. In it the notion of a process is
fundamental, with processes created and managed
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are
programmed in a simple dynamically typed functional
programming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers.

Erlang2 is used for programming fault-tolerant,
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent
programming language; concurrency belongs to
the language, not to the operating system. Its
programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

overhead; programmers can create
large numbers of Erlang processes yet
ignore any preconceived ideas they
might have about limiting the number
of processes in their solutions.

All Erlang processes are isolated
from one another and in principle
are “thread safe.” When Erlang ap-
plications are deployed on multicore
computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed
as extremely object-oriented though
without the usual mechanisms associ-
ated with traditional OO languages.

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even
within a process, data is immutable.
The sequential Erlang subset that ex-
ecutes within an individual process is a
dynamically typed functional program-
ming language with immutable state.b
Moreover, instead of classes, methods,
and inheritance, Erlang has modules
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling,
code-replacement mechanisms, and a
large set of libraries.

Here, I outline the key design crite-
ria behind the language, showing how
they are reflected in the language itself,
as well as in programming language
technology used since 1985.

Shared Nothing
The Erlang story began in mid-1985
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate
shared memory; the primitives are intended
for writing special system processes and not
normally exposed to the programmer.

b This is not strictly true; processes can mutate
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

DOI:10.1145/1810891.1810910

The same component isolation that made
it effective for large distributed telecom
systems makes it effective for multicore
CPUs and networked applications.

BY JOE ARMSTRONG

