Unuiversity | School of

of Glasgow | Computing Science

Transactions

Advanced Operating Systems
Tutorial 6

Tutorial Outline

® Review of lectured material
e Key points

® Discussion

® Transactions for managing concurrency

® Transactions vs. message passing

Review of Lectured Material

® (Concepts of transactions
e ACID properties

® (Concurrent execution

® Possible to compose transactions

® |mplementation challenges

e (Controlling I/0O operations
e Controlling memory access — rollback and recovery

¢ |mplementation using monadic concepts

® |ntegration into Haskell

® |ntegration challenges for other languages

Key Points

e Understanding of the concepts of transactions

e Understanding of implementation techniques in
functional languages

® Awareness of practical challenges

Discussion: Transactions

e T Harris, S. Marlow, S. Peyton Jones and M. Herlihy,
“Composable Memory Transactions”, CACM, 51(8),
August 2008. DOI:10.1145/1378704.1378725

® |s transactional memory a realistic technique?

e Do its requirements for a purely functional language,
with controlled /O, restrict it to being a research toy?

® How much benefit can be gained from transactional
memory in more traditional languages®?

D01:10.1145/1378704.1378725

Composable Memory Transactions

Abstract
Wriing concurent programs s motorously diffclt and
i of ing practical importance. A particular source
 that cven
abtrctions camnotbe composed ogethr 0 orm ager
ibstractions. In this paper we present a concurrency model,
ed on transactional memory, that offers far richer com-
position.Allhe usual benefits of transactional mermory are
present ¢, freedom from low-leveldeadlock), but in addi-

im Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

tees than are conventionally possible. In particular, we
guarantee “strong atomicity™” in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing.
tions are compositional: small transactions can be
glued together to form larger transactions.

* We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., itis try

that

carlier work.

1INTRODUCTION
The free lunch is over.* We have been used to the idea that
our programs will go faster when we buy a next-generation
processor, but that time has passed. While that next-
generation chip will have more CPUs, each individual CPU
will be no faster than the previous year's model. If we want
our programs to run faster, we must learn to write parallel
programs,

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems hat are reliable
and scalable. Furthermore, systems built using locks are dif-

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program:
‘ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically* Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and

does not have to) idenity the condiion which will
ed automatically by the STM.

function allows possibly blocking transac-
‘omposed in sequence. Beyond this, we also
provide orE1se, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orELse composes, whereas select

Erephing we descib i folly implemented o te Glas

‘gow Haskell Compiler (GHC), a fully fledged optimizing
p Hiaskel he ST

were incorporated in the GHC 6.4 release in 2005. Further

examples and 2 programmer-oriented tutorial ace also

available.

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer

priority tim- | a qualtative improvement in anguage suppor for modular
g to the improvement in moving from as-

ity and concurrency. sembly code to a high-level language. Just as with assembly
Early work on software transactional memory suffered | code, a programmer with sufficient time. " sl iy b
eve Firstly, it did not ain better p low-level

code from bypassing the STM interface and accessing data

h
but forall but the most Hcmmduw_ epplatons ourbigher-

tions executing atomically. Furthermore, early STM systems
did not provide a convineing story for building operations
that may block—for example, a shared work-queue support
ing operations that wait if the queue becomes empry.

Our work on STM-Haskell set out to address these prob
lems. In particular, our original paper makes the following
contributions:

* We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell's type system to give far stronger guaran-

level STM ab ugh.
“This paper s an abbreviated and polished version of an
carlerpaper with he same e Sincethen there has been

actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orELse. In our
view this is serious omission: locks without condition vari-
ables would be of limited use,

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here e o space hmitations

http://dx.doi.org/10.1145/1378704.1378725
http://dx.doi.org/10.1145/1378704.1378725

Discussion: Transactions vs. Messages

e Two very different approaches to concurrency offered
by transactions and message passing

e (Conceptual purity vs. engineering pragmatics?

e Message passing is intuitive, easy to integrate into existing systems,

but doesn’t solve the problem of composition?

e Transactions are theoretically elegant, but cannot be integrated into
real-world systems?

e How should future systems be designed?

® Are we still missing the right programming model for
massively concurrent systems?

D01:10.1145/1378704.1378725

Composable Memory Transactions

By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstrac
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source

even
abstractions cannot be composed together to form Izrgﬂ

tees than are conventionally possible. In particular, we
guarantee “strong atomicity™” in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac
tions are compositional: small transactions can be

abstractions. In this paper we

ased on transactional memory, that offers far richer com-
position.Allhe usual benefits of transactional mermory are
present ¢, freedom from low-leveldeadlock), but in addi-

toform la
+ We present a modular form of blocking (Scction 3.2).
The idea is simple: a transaction calls a ret.ry opera-
tion to signal that it is not yet ready to run (e.g., itis try

were inaccessible in earlier work.

1INTRODUCTION
The free lunch is over.* We have been used to the idea that
our programs will go faster when we buy a next-generation
processor, but that time has passed. While that next-
generation chip will have more CPUs, each individual CPU
will be no faster than the previous year's model. If we want
our programs to run faster, we must learn to write parallel

programs,

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems hat are reliable
and scalable. Furthermore, systems built using locks are dif-

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.” Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and

tim

does nothave to identify the condition which will
enable it; this s detected automatically by the STM.

+ The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide oxE1se, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orELse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-

‘gow Haskell Compiler (GHC), a fully fledged optimizing
P C Haskell; the STV

were incorporated in the GHC 6.4 release in 2005. Further

examples and 2 programmer-oriented tutorial ace also

available.

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
@ qualiative mprovement i languge support for modular

ity and concurrency.
Early work on Software transactional memory suffered

to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, & pogrammer with sttt and sl ey ob

o from bypassing the STA interface and acccssing data

ain better p l w-level

h
but forall but the most Hcmnndm; plistions,ouigher-

level STM ab

tions executing atomically. Furthermore, early STM systems

did not provide a convineing story for building operations

that may block—for example, a shared work-queue support
ifth queuebecomes cmpy

ing operations that wa

Our work on STM-Haskell set out to address these prob
Jeme. In parieular, our riginal paper makes the ollowing
contributions:

* We re-express the ideas of transactional memory in the
etting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-

touse Haskel' type system to give far stronger guaran-

ugh.
“This paper s an abbreviated and polished version of an
carlerpaper with he same e Sincethen there has been

actional memory, but almostallof it deals with the question
of atomic memory update, while much less attention is paid
0 our central concerns of blocking and synchronization be-
tween threads, exemplified b Else. In our
view this is serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

contributed articles

001:10.1145/1810891.1810910

The same component isolation that made
it eﬂ‘echve Inr large dlstr uled telecom

overhead; programmers can create
large numbers of Erlang processes yet
ore any preconceived ideas they
‘might have about limiting the number
of processes in their solutions.

mal
cPl.Is and netwnrked applncahons.

All Erlang processes are isolated
from one another and in principle

['8v JoE ARMsTRONG

are “thread safe.” When Erlang ap-
plications are deployed on multicore

Erlang

ERLANG IS A concurrent programming language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we've seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to

that contain functions, as well as high-
orderfunctons. I also includes pro-

multicore computers. In it the notion of a process is | eeses, sphisiad error handing,
i

fundamental, with processes created and mana
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are

ged | stortibraries

e, 1 utine ch key desig crie
i behind the language, howing how
eyt reficsed T th g

programmed in a simple dynamically typed functional | s i et e ML el

programming language; concurrency belongs to

the languag

programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

gramming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers

is used for programming fault-tolerant,
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent

not to the operating system. Its

technology used since 1985

Shared Nothing
The Erlang story began in mid-1985
when 1 was a new employee at the Er-
iesson Computer Science Lab in Stock

= The shared memory is hidden from e o
e, Practicallyall application program:

never use primicives that manipulate
Shared memory th primidses are ntanded
for wrting special sysem processes and not
Wmumm.mm g

