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Tutorial Outline

• Review of lectured material

• Key points

• Discussion
• Transactions for managing concurrency

• Transactions vs. message passing
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Review of Lectured Material

• Concepts of transactions
• ACID properties

• Concurrent execution

• Possible to compose transactions

• Implementation challenges
• Controlling I/O operations

• Controlling memory access – rollback and recovery

• Implementation using monadic concepts

• Integration into Haskell

• Integration challenges for other languages
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Key Points

• Understanding of the concepts of transactions

• Understanding of implementation techniques in 
functional languages

• Awareness of practical challenges
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Discussion: Transactions

• T. Harris, S. Marlow, S. Peyton Jones and M. Herlihy, 
“Composable Memory Transactions”, CACM, 51(8), 
August 2008. DOI:10.1145/1378704.1378725

• Is transactional memory a realistic technique? 

• Do its requirements for a purely functional language, 
with controlled I/O, restrict it to being a research toy?

• How much benefit can be gained from transactional 
memory in more traditional languages?
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Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and 
is of increasing practical importance. A particular source 
of concern is that even correctly implemented concurrency 
abstractions cannot be composed together to form larger 
abstractions. In this paper we present a concurrency model, 
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are 
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that 
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that 
our programs will go faster when we buy a next- generation 
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU 
will be no faster than the previous year’s model. If we want 
our programs to run faster, we must learn to write parallel 
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they 
make it hard to design computer systems that are reliable 
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory 
(STM), which can perform groups of memory operations 
atomically.23 Using transactional memory instead of locks 
brings well-known advantages: freedom from deadlock and 
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered 
several shortcomings. Firstly, it did not prevent transactional 
code from bypassing the STM interface and accessing data 
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems 
did not provide a convincing story for building operations 
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following 
contributions:

We re-express the ideas of transactional memory in the 
setting of the purely functional language Haskell 
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able 
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we 
guarantee “strong atomicity”15 in which transactions 
always appear to execute atomically, no matter what 
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be 
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2). 
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer 
does not have to identify the condition which will 
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also 
provide orElse, which allows them to be composed as 
alternatives, so that the second is run if the first retries 
(see Section 3.4). This ability allows threads to wait for 
many things at once, like the Unix select system 
call—except that orElse composes, whereas select 
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing 
compiler for Concurrent Haskell; the STM enhancements 
were incorporated in the GHC 6.4 release in 2005. Further 
examples and a programmer-oriented tutorial are also 
available.19

Our main war cry is compositionality: a programmer can 
control atomicity and blocking behavior in a modular way 
that respects abstraction barriers. In contrast, lock-based 
approaches lead to a direct conflict between abstraction and 
concurrency (see Section 2). Taken together, these ideas offer 
a qualitative improvement in language support for modular 
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly 
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level 
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an 
earlier paper with the same title.9 Since then there has been 
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question 
of atomic memory update, while much less attention is paid 
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our 
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the 
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both 
are omitted here due to space limitations.
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Discussion: Transactions vs. Messages

• Two very different approaches to concurrency offered 
by transactions and message passing

• Conceptual purity vs. engineering pragmatics?
• Message passing is intuitive, easy to integrate into existing systems, 

but doesn’t solve the problem of composition?

• Transactions are theoretically elegant, but cannot be integrated into 
real-world systems?

• How should future systems be designed? 

• Are we still missing the right programming model for 
massively concurrent systems?
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ERLANG IS  A  concurrent programming language 
designed for programming fault-tolerant distributed 
systems at Ericsson and has been (since 2000) freely 
available subject to an open-source license. More 
recently, we’ve seen renewed interest in Erlang, as 
the Erlang way of programming maps naturally to 
multicore computers. In it the notion of a process is 
fundamental, with processes created and managed 
by the Erlang runtime system, not by the underlying 
operating system. The individual processes, which are 
programmed in a simple dynamically typed functional 
programming language, do not share memory and 
exchange data through message passing, simplifying 
the programming of multicore computers. 

Erlang2 is used for programming fault-tolerant, 
distributed, real-time applications. What differentiates 
it from most other languages is that it’s a concurrent 
programming language; concurrency belongs to  
the language, not to the operating system. Its 
programs are collections of parallel processes 
cooperating to solve a particular problem that can  
be created quickly and have only limited memory 

overhead; programmers can create 
large numbers of Erlang processes yet 
ignore any preconceived ideas they 
might have about limiting the number 
of processes in their solutions. 

All Erlang processes are isolated 
from one another and in principle 
are “thread safe.” When Erlang ap-
plications are deployed on multicore 
computers, the individual Erlang pro-
cesses are spread over the cores, and 
programmers do not have to worry 
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between 
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed 
as extremely object-oriented though 
without the usual mechanisms associ-
ated with traditional OO languages. 

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even 
within a process, data is immutable. 
The sequential Erlang subset that ex-
ecutes within an individual process is a 
dynamically typed functional program-
ming language with immutable state.b 
Moreover, instead of classes, methods, 
and inheritance, Erlang has modules 
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling, 
code-replacement mechanisms, and a 
large set of libraries. 

Here, I outline the key design crite-
ria behind the language, showing how 
they are reflected in the language itself, 
as well as in programming language 
technology used since 1985. 

Shared Nothing 
The Erlang story began in mid-1985 
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate 
shared memory; the primitives are intended 
for writing special system processes and not 
normally exposed to the programmer.

b This is not strictly true; processes can mutate 
local data, though such mutation is discour-
aged and rarely necessary.

Erlang
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The same component isolation that made 
it effective for large distributed telecom 
systems makes it effective for multicore  
CPUs and networked applications. 
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