
Message Passing

Advanced Operating Systems
Tutorial 5



Tutorial Outline

• Review of Lectured Material

• Discussion: Barrelfish and multi-kernel systems

• Programming exercise

2



Review of Lectured Material

• Implications of multicore systems
• Hardware trends; NUMA and heterogeneity in multicore systems

• Challenges of NUMA systems – is a shared memory model appropriate?

• Multi-kernel systems – distributed operating systems for multicore

• Message passing systems
• Limitations of threads and lock-based concurrency

• Multicore memory models; composition of lock-based code

• Concepts of message passing systems
• Interaction models; communication and the type system; naming communications

• Message handling; immutability; linear types; use of an exchange heap

• Pattern matching and state machines

• Error handling; let-it-crash philosophy; supervision hierarchies; case study

• Erlang and Scala+Akka as examples

3



Key Points

• Understand problems of scaling multicore systems 
while maintaining a shared memory programming 
model
• The multi-kernel operating system model

• The message passing programming model

• Reflect on the suitability of message passing as a 
concurrency primitive for future systems
• Advantages and disadvantages compared to lock-based concurrency with 

shared mutable state

4



Discussion: Barrelfish

• A. Baumann et al, “The Multikernel: A new OS 
architecture for scalable multicore systems”, Proc. 
ACM SOSP 2009. DOI:10.1145/1629575.1629579

• Is the premise that messages are more suitable than 
shared memory for future systems reasonable?

• Does it make sense to run a distributed operating 
system on the cores of a single hardware device?

• Where is the boundary for a Barrelfish-like system?
• Distinction between a distributed multi-kernel and a distributed 

system of networked computers?

• Barrelfish is clearly an extreme: a shared-nothing 
system implemented on a hardware platform that 
permits some efficient sharing
• Is it a desirable extreme?

• Current systems sit at the opposite extreme – shared everything, 
despite increasingly separate hardware resources

5

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann�, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter�, Timothy Roscoe�, Adrian Schüpbach�, and Akhilesh Singhania�

�Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State 
replica

State
replica

App

Agreement 
algorithms

Interconnect

Heterogeneous 
cores

Arch-specific 
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/1629575.1629579


Programming Exercise

• Exercise 3 now available
• Aim – to explore the ease of use of message passing programming for 

non-expert programmers

• No AOS(M) lectures tomorrow or next week, to give 
time to work on the programming exercise
• Next lecture on 26 February 2013

• Questions about the exercise can be sent to me by email, or make an 
appointment to talk with me

6


