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Tutorial Outline

• Review of Lectured Material

• Discussion: Barrelfish and multi-kernel systems

• Programming exercise
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Review of Lectured Material

• Implications of multicore systems
• Hardware trends; NUMA and heterogeneity in multicore systems

• Challenges of NUMA systems – is a shared memory model appropriate?

• Multi-kernel systems – distributed operating systems for multicore

• Message passing systems
• Limitations of threads and lock-based concurrency

• Multicore memory models; composition of lock-based code

• Concepts of message passing systems
• Interaction models; communication and the type system; naming communications

• Message handling; immutability; linear types; use of an exchange heap

• Pattern matching and state machines

• Error handling; let-it-crash philosophy; supervision hierarchies; case study

• Erlang and Scala+Akka as examples
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Key Points

• Understand problems of scaling multicore systems 
while maintaining a shared memory programming 
model
• The multi-kernel operating system model

• The message passing programming model

• Reflect on the suitability of message passing as a 
concurrency primitive for future systems
• Advantages and disadvantages compared to lock-based concurrency with 

shared mutable state
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Discussion: Barrelfish

• A. Baumann et al, “The Multikernel: A new OS 
architecture for scalable multicore systems”, Proc. 
ACM SOSP 2009. DOI:10.1145/1629575.1629579

• Is the premise that messages are more suitable than 
shared memory for future systems reasonable?

• Does it make sense to run a distributed operating 
system on the cores of a single hardware device?

• Where is the boundary for a Barrelfish-like system?
• Distinction between a distributed multi-kernel and a distributed 

system of networked computers?

• Barrelfish is clearly an extreme: a shared-nothing 
system implemented on a hardware platform that 
permits some efficient sharing
• Is it a desirable extreme?

• Current systems sit at the opposite extreme – shared everything, 
despite increasingly separate hardware resources
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The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann�, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter�, Timothy Roscoe�, Adrian Schüpbach�, and Akhilesh Singhania�

�Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.
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Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/1629575.1629579


Programming Exercise

• Exercise 3 now available
• Aim – to explore the ease of use of message passing programming for 

non-expert programmers

• No AOS(M) lectures tomorrow or next week, to give 
time to work on the programming exercise
• Next lecture on 26 February 2013

• Questions about the exercise can be sent to me by email, or make an 
appointment to talk with me
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