
Wrap-up and Conclusions

Advanced Operating Systems
Lecture 16

Lecture Outline

• Review of material

• Key points

• Discussion

• Examination

2

Real-time Scheduling of Periodic Tasks

• Introduction and system model
• Tasks, jobs, processors, resources

• Timing constraints and scheduling algorithms

• Periodic, aperiodic, and sporadic tasks

• Hard and soft real-time systems

• Scheduling periodic tasks
• Types of scheduler: clock-driven vs. priority-driven

• Scheduling algorithms; approaches to proving correctness

• Rate monotonic: non-optimality, time-demand analysis & critical instants,
simply periodic systems, maximum utilisation tests

• Earliest deadline first: optimality, maximum utilisation test, density test

• Choice of rate monotonic vs. earliest deadline first

• Other algorithms: deadline monotonic and least slack time

3

Scheduling Aperiodic and Sporadic Tasks

• Aperiodic and sporadic tasks; acceptance tests

• Scheduling aperiodic jobs
• Background execution

• Periodic servers: polling, deferrable, and sporadic

• Critical instant analysis for fixed-priority deferrable server; maximum
utilisation test for deferrable server in EDF systems

• Sporadic server budget consumption/replenishment; proofs of correctness

• Scheduling sporadic jobs
• Acceptance test in EDF systems: density of intervals

• Acceptance test in rate monotonic systems: maximum usage over periods

• Implementation choices

4

Resource Management

• Resource management protocols
• Priority inheritance protocol – simple, but transitive blocking and potential

deadlock

• Priority ceiling protocol – reduced blocking and no transitive blocking, but
requires a-priori knowledge of resource usage; must track system priority
ceiling; avoidance blocking prevents deadlock

• Stack-based priority ceiling protocol – further reduction in blocking if jobs
never self-suspend; blocks jobs from starting until resources available

• Maximum duration of blocking; operation in dynamic priority systems

5

Programming Real-time Systems

• Real-time and embedded systems programming
• Ensuring predictable timing

• Device drivers – hardware interactions; options for improving robustness

• System longevity; desire to improve robustness through alternate system
implementation techniques

6

Garbage Collection

• Automatic memory management
• Stack allocation

• Reference counting
• Simple, incremental, problems with cycles

• Garbage collection
• Mark-sweep

• Mark-compact

• Copying collectors

• Generational collectors

• Real-time collectors

• Practical factors

7

Message Passing

• Implications of multicore systems
• Hardware trends; NUMA and heterogeneity in multicore systems

• Challenges of NUMA systems – is a shared memory model appropriate?

• Multi-kernel systems – distributed operating systems for multicore

• Message passing systems
• Limitations of threads and lock-based concurrency

• Multicore memory models; composition of lock-based code

• Concepts of message passing systems
• Interaction models; communication and the type system; naming communications

• Message handling; immutability; linear types; use of an exchange heap

• Pattern matching and state machines

• Error handling; let-it-crash philosophy; supervision hierarchies; case study

• Erlang and Scala+Akka as examples

8

Transactions

• Concepts of transactions
• ACID properties

• Concurrent execution

• Possible to compose transactions

• Implementation challenges
• Controlling I/O operations

• Controlling memory access – rollback and recovery

• Implementation using monadic concepts

• Integration into Haskell

• Integration challenges for other languages

9

General Purpose GPU Programming

• Heterogeneous instruction set systems

• Heterogeneous multi-kernel systems – Helios

• Main core with heterogenous offload
• Graphics offload hardware – GPGPU

• Programming model

• OpenCL

• Integration with operating systems

• Heterogenous virtual machines – Hera JVM

• Hybrid models – Accelerator
• Lazy encoding of SIMD-style operations and JIT compilation into type

system

10

Key Points

• Real-time systems – predictability and reliability are
critical; desire to raise level of abstraction to help to
achieve these goals

• Garbage collection is effective, but at high memory
overhead cost – real-time garbage collection exists

• Message passing effective for multi-core systems;
potential of multi-kernel operating systems model

• Transactions seem to have limited applicability

• No effective GPGPU programming model; OpenCL
is too low-level and not a long-term solution

11

Discussion

• Wide spectrum of research ideas and concepts

• Which are seeing widespread use?
• Functional languages and message passing concurrency

• Garbage collection – potential for integration with kernels

• Increased use of static code analysis tools, to debug the limitations of C

• Opportunities for dependable kernels
• New implementation frameworks and safe programming languages

• Approaches similar to Singularity have large potential

12

Examination

• Final examination:
• Worth 80% of marks for the course

• 2 hours; answer 3-out-of-4 questions

• Sample exam and past papers available on Moodle, and on the website

• All material covered in the lectures, tutorials, and
papers is examinable
• Aim is to test your understanding of the material, not simply to test your

memory of all the details – in particular, read papers to understand the
concepts, not details

• Explain why, don’t just recite what – are looking for your reasoned and
justified technical opinion about the material

13

The End

http://csperkins.org/teaching/adv-os/

14

