
General Purpose GPU Programming (2)

Advanced Operating Systems
Lecture 15

Lecture Outline

• Programming models (cont’d)
• Heterogenous virtual machines

• Discussion

• Hybrid and alternative architectures

2

Heterogeneous Virtual Machines

• Multi-kernel and offload models problematic:
• Heterogeneous multi-kernel model is conceptually simple, but not a good

fit for modern hardware

• Heterogenous offload processors are widely used:
• But – have high cognitive overhead on programmers, due to SIMD programming model

• Have a complex and high-overhead offload process, exposing too many low-level details

• Are difficult to reason about and debug

• Can a heterogeneous virtual machine (VM) model
hide some complexity?
• Rather than expose details of the heterogeneous processor and offload

process, hide offload complexity in a virtual machine?

• Can a JIT compiler translate regular code to fit programming model of the
heterogenous offload processor?

3

Heterogeneous VM Programming Model

• Write in high-level language targeting VM, ignoring
the distinction between processor cores
• High-level code desirable – specify what needs to be done, leaving how

to the VM and/or run time libraries

• The VM can implement operations differently depending on the processor
architecture targeted

• Let the VM handle the offload
• The VM can query and setup the heterogenous processor code, exposing

only a high-level API (if any) to the programmer

• The VM can JIT compile code for different processor architectures

• Pushes complexity onto the VM – simple for application programmer

• Requires close integration of JIT and VM with operating system kernel

4

Example: Hera JVM

• A JVM for the Cell processor, can offload
methods from PPE to SPE cores
• JIT compilation; methods compiled for appropriate

core based on runtime code placement algorithm

• Data caching: SPE memory is not cache coherent;
data cached on SPE when method starts; cache
flushed at synchronisation points, following Java
memory model

• Methods copied to SPE memory in their entirety;
migration onto the SPE causes an entire method,
and any methods it calls, to run on the SPE

• Garbage collector understands both architectures,
and the caches on the SPEs

• Hard to decide which methods to migrate to SPE:

• Explicit annotations (@RunOnSPECore, @RunOnPPECore)
work, but place high overhead on programmer

• Behaviour hints (@ArithmeticCode, @ObjectAccessCode,
@LargeWorkingSet) allow the JVM runtime to automatically
migrate methods to the SPEs, but are suboptimal

• Optimal solution is an open problem

• Poor performance, since cannot make effective use
of vector instructions on SPE cores

5

R. McIlroy and J. Sventek, “Hera-JVM: A Runtime System for
Heterogeneous Multi-Core Architectures”, Proc. ACM OOPSLA
Conference, October 2010. DOI:10.1145/1869459.1869478

Application

Java Library

Runtime System

Low Level
Assembly

PPC
Compiler

PPE Core

Low Level
Assembly

SPE
Compiler

SPE Core

Java Code

Assembly Code

Processing Core

Key

Figure 2. The structure of Hera-JVM. Much of Hera-JVM’s
runtime can be shared by both cores, given its Java in Java
design.

phy, this code is largely portable. Thus, other than a small
number of architecture-specific routines, the same runtime
system code is shared by both core types (Figure 2). This
approach extends the philosophy of hiding the architecture’s
heterogeneity right through application code, the Java Lib-
rary code and the majority of the runtime system’s code,
simplifying the runtime system’s design. This also improves
the runtime system’s maintainability; the fact that the same
code is shared by both core types reduces the likelihood of
introducing integration bugs and inconsistencies in shared
data structures.

Hera-JVM is a non-interpreting JVM; all application, lib-
rary and runtime Java methods are compiled to machine
code before being executed. Other than the subset of the run-
time system methods which are pre-compiled into the boot-
image, all Java methods are compiled just in time. Thus Java
code is distributed in architecturally-neutral Java Bytecode,
which will only be compiled for a particular core architec-
ture if it is to be executed by a thread running on that core
type. Since it is expected that most applications will exhibit
a partitioning between code which is best run on the PPE or
the SPEs, most methods will only ever be compiled for one
of the two core’s architectures. Thus, the compilation over-
head (both in time and memory requirements) of running an
application on an HMA, such as the Cell, need be little more
than running on a single architecture processor.

4.1 Compiling Java Bytecode for the SPE Cores
To execute Java code on the SPE cores of the Cell processor,
Hera-JVM requires a Java bytecode to SPE machine code
compiler and some low-level runtime system support code.
The low-level runtime system support code is the only part of
the Java runtime system which is kept permanently resident
in the SPE’s local memory (taking up less than 4KB of each
SPE’s 256KB of local memory). This low-level support code
deals with caching of data and code, and the lowest levels of
inter-thread synchronization and interrupt handling. The rest
of the Hera-JVM runtime system is written in Java and can
be cached into the SPE’s local memory as required like any
other Java method.

The remainder of this section describes the process by
which this compiler and runtime system support code en-
ables the SPE cores to execute Java code. A running example
of a simple Java method “sum()”, that calculates the total
of all the elements in a linked list, will be used to illustrate

i n t sum (Li s tNode n) {
i n t t o t a l = 0 ;

whi le (n != n u l l) {

t o t a l += n . v a l ;

n = n . n e x t () ;

}
re turn t o t a l ;

}
(a) Java Code

0 : i c o n s t 0
1 : i s t o r e 1
2 : a l o a d 0
3 : i f n u l l <21>
6 : i l o a d 1
7 : a l o a d 0
8 : g e t f i e l d <va l>
1 1 : i a d d
1 2 : i s t o r e 1
1 3 : a l o a d 0
1 4 : i n v o k e v i r t <next>
1 7 : a s t o r e 0
1 8 : go to <2>
2 1 : i l o a d 1
2 2 : i r e t u r n

(b) Resulting Bytecode

Figure 3. Example Java method - summing a linked list.

different aspects of this process. Figure 3 shows the source
code for this method (left), and the resulting Java bytecode
(right). Hera-JVM does not require any changes to the Java
source-to-bytecode compiler or to the bytecode format.

A Java method, such as sum() in Figure 3, is compiled
into a block of machine code that can be executed natively
by an SPE core. Fundamental bytecodes, such as arithmetic
and branch operations, can be translated directly into one
or more SPE machine instructions by the compiler. More
complex bytecodes, such as the new bytecode used for ob-
ject allocation, are translated into calls to special runtime
system entry points. These runtime system entry points are
special Java methods that perform the required operation,
then return execution to the original method. Since this run-
time system code is shared by both the PPE and SPE cores,
these complex bytecode operations can essentially be lever-
aged from the existing JikesRVM implementation. Similarly,
complex runtime system components, such as file handling,
class loading or thread scheduling, can be supported on ei-
ther core type with little modification.

As a stack-oriented language, Java bytecodes implicitly
operate on variables located on an operand stack. For exam-
ple, the iadd bytecode in Figure 3 pops two integer values
off the operand stack, adds them, and pushes the result back
onto the operand stack. Since almost every bytecode pushes
or pops values from the stack, it is important that these op-
erations are efficient.

A thread’s stack resides in main memory (so that it can
be accessed by any core upon which it is scheduled), how-
ever, having SPE cores operate directly on this stack in main
memory would be incredibly inefficient, due to their DMA-
based access to main memory. Therefore, the top portion of
the currently executing thread’s stack is held in the SPE’s lo-
cal memory to provide efficient stack access. Upon a thread
switch, a 16KB block at the top of the thread’s stack is
copied into a reserved portion of the SPE’s local memory.
Stack updates are performed on this local copy, which is
then written back to main memory when the thread is context
switched from this core.

This paper introduces Hera-JVM, a Java Virtual Machine
(JVM) which hides the heterogeneous nature of the Cell
multi-core processor behind a homogeneous virtual machine
interface. The Cell multi-core processor is a particularly
challenging environment on which to develop applications,
due to cores with different instruction set architectures and a
non-coherent memory subsystem.

Hera-JVM supports the full Java language1; unmodified
Java applications can be executed across both the Cell pro-
cessor’s main PowerPC-based core and the additional SPE
accelerator cores. Migration of threads between core types
is handled transparently from the point of view of the ap-
plication and does not require application source code to
be modified. Hera-JVM uses a Just-In-Time (JIT) compiler
to generate machine code for the disparate instruction sets
of these two core types on-demand. Threads running on ei-
ther core type can invoke native methods, dynamically allo-
cate memory, have it recovered by GC, and synchronize us-
ing shared-memory data structures (consistent with the Java
Memory Model [10]), even though the hardware does not
provide hardware cache coherency.

This paper builds upon the work presented in [13], but
describes a much more complete runtime system that can
support real-world Java applications as well as providing a
much more thorough evaluation of this runtime system.

The main contributions of this work are:

• The creation of the first JVM implementation to support
execution of real-world Java applications across hetero-
geneous processing core types with different instruction
sets architectures (ISAs) and provide transparent migra-
tion of threads between these core types.

• A software caching mechanism that provides efficient
access to the non-coherent memory subsystem of the
Cell processor by employing high-level type information
embedded in Java bytecode.

• Demonstration of real-world Java workloads that exhibit
up to a 2.25x speedup when executed on one of the Cell
processor’s SPE accelerator cores, compared to execution
on its main PPE core, and up to a 13x speedup if scaled
across all 6 SPE cores.

Section 2 introduces the Cell processor in more detail,
outlining the main features of its architecture that make ap-
plication development difficult. Section 3 presents the de-
sign principles around which Hera-JVM is based and dis-
cusses the problems that the Cell processor’s unusual ar-
chitecture presents in achieving these principles. Section 4
describes the implementation of these design principles in
Hera-JVM for the Cell processor. Section 5 expands upon
this implementation overview to provide more in-depth de-
tails of the features which are required for Hera-JVM to

1 The only deviation from the Java Runtime Specification is that it uses
a different floating point rounding mode (rounding towards zero instead
of rounding to nearest). This is due to lack of hardware support on one
of the Cell processor’s cores types. It only affects the least significant bit
of single precision flotation point calculations; the more commonly used
double precision format is unaffected.

SPE SPE SPE SPE

SPE SPE SPE SPE

PowerPC
(PPE)

Element Interconnect Bus Memory

(a) The architecture of the Cell processor.

DMA
Transfer
Engine
(MFC)

SPE
Core
(SPU)

SPE

Main Memory

Control Flow

Data Flow

Private
Local

Memory

(b) An SPE core’s memory subsystem.

Figure 1. The Cell Processor.

support real-world Java applications on the Cell processor.
Hera-JVM’s performance under both synthetic and real-
world Java benchmarks is presented in Section 6. Section 7
contrasts Hera-JVM with relevant related work. Finally, Sec-
tion 8 concludes and discusses possible future directions for
this work.

2. Background: The Cell Processor
The Cell processor [6, 9, 17] was developed primarily
for multimedia applications, specifically the game market,
where it is the main processor used by the Sony Playsta-
tion 3. It is also being actively employed in a variety of other
areas, such as scientific and high performance computing.

The Cell processor contains two different processing
core types: a single Power Processing Element (PPE) core;
and eight Synergistic Processing Engine (SPE) cores (Fig-
ure 1(a)). Both core types are dual issue, in-order architec-
tures, running at 3.2 GHz, however, they have substantially
different architectures. The PPE is a conventional 64-bit
PowerPC-based core, supporting the Linux operating system
and any applications compiled for the PowerPC architecture.
The SPEs are designed to perform the bulk of the computa-
tion on the Cell processor. They have a unique instruction-
set, highly tuned for floating point, data-parallel workloads.
The SPEs do not run any operating system code, relying on
the PPE to perform operations such as page table updates or
file I/O.

The processing cores share access to external DRAM
memory through a circular ring-based Element Interconnect
Bus [2]. The PPE core has a two-level cache to reduce
data access latencies, with a 64KB L1 cache (split evenly
between data and instruction caches) and a 512KB L2 cache.

Unlike the PPE, the SPE cores do not have transparent
hardware caches for accessing main memory; instead, each
SPE contains 256KB of non-coherent, private, local mem-
ory. The processing elements of the SPEs can access only

http://dx.doi.org/10.1145/1869459.1869478
http://dx.doi.org/10.1145/1869459.1869478

Limitations of Heterogenous VM Model

• Hera JVM shows high-level languages often not a
good fit for heterogenous offload processors
• Example: JVM cannot express SIMD-style array processing operations,

encourages conditional execution, imperative code, and mutable state –
opposite of what is needed for good GPU code

• But, GPU-optimised language would perform poorly on general-purpose
CPUs, with small number of cores optimised for imperative code

• Automatically extracting parallelism hasn’t been an
effective approach
• Difficult for a single processor architecture

• Offload to heterogenous cores only complicates problem, due to need to
manage offload overhead

6

Discussion

• Offload to slave processor model is common
• Hard for programmer, but gives good performance

• Main kernel treats the GPU as a resource, that can be claimed by a
process, and managed as any other resource

• Effective, but overly complex programming model

• Abstraction via virtual machine conceptually clean
• In principle, allows transparent offload of work from main processor to

subordinate processors such as GPUs

• Difficult in practice: applications written without account for the different
processor types and capabilities, and don’t aid the runtime; insufficient
information for the runtime to effectively offload work – likely inefficient

• Straight forward programming model, but not effective

7

Hybrid Architectures

• Can we wrap a device-specific programming model
in the virtual machine, alongside a general purpose
language?
• Add types that represent SIMD-style operations, so giving the VM hints

when to offload, and also easing programming model

• Explicit model of device-specific operations, and control over when they
execute

• Virtual machine hides low-level details

• High-level model – coding SIMD-style operations in
type system – eases programming

8

Example: Accelerator

• Extension to C# to provide data-
parallel arrays with GPU offload
• Support operations such as conversion

to/from standard arrays, element-wise
arithmetic, reductions, transformations,
and matrix algebra

• Data parallel arrays are lazy, and don’t
compute their value until converted back
to a standard array

• Lazy evaluation helps efficiency: runtime
JIT compiles all operations on a single
data parallel array at once, and passes
to the GPGPU for execution as a single
block

• Similar model to OpenCL, except
the complexity of managing the
GPU is pushed onto the VM
• Programming model is very similar, and

there is similar control over when code
executes on the GPU

9

D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to
program GPUs for general-purpose use”, Proc. ACM ASPLOS, October
2006, DOI:10.1145/1168857.1168898

static float[,] Blur(float[,] array, float[] kernel) {
 float[,] result;
 DFPA parallelArray = new DFPA(array);

 FPA resultX = new FPA(0f, parallelArray.Shape);
 for (int i = 0; i < kernel.Length; i++) {
 int[] shiftDir = new int[] { 0, i};
 resultX += PA.Shift(parallelArray, shiftDir) * kernel[i];
 }

 FPA resultY = new FPA(0f, parallelArray.Shape);
 for (int i = 0; i < kernel.Length; i++) {
 int[] shiftDir = new int[] { i, 0 };
 resultY += PA.Shift(resultX, shiftDir) * kernel[i];
 }
 PA.ToArray(resultY, out result);
 parallelArray.Dispose();
 return result;
}

http://dx.doi.org/10.1145/1168857.1168898
http://dx.doi.org/10.1145/1168857.1168898

Discussion

• Embedding lazy SIMD operations in types eases
programming burden
• Restricted set of operations can be performed in parallel, on appropriate

array types – rough match to hardware features

• Only exploits functional SIMD operations – no flexibility for conditional
processing, even if hardware allows

• Lazy operation can be confusing to programmers – when does the offload
and computation occur? – but less complex than OpenCL-style model

• Considerable complexity pushed into VM
• Good performance needs effective operation of lazy JIT compilation in VM

• Opaque, and difficult to tune

10

Future Directions

• Heterogeneous offload model (e.g., OpenCL) is the
only effective solution to date
• Heterogenous VM offers poor performance – too big a mismatch between

VM language and GPGPU hardware

• Hybrid model has potential, but opaque to tuning, and limited functionality

• Future directions:
• Higher-level APIs for offload management?

• DSLs for programming SIMD-style hardware – a minimal pure functional
language, with data parallel arrays as main datatype, but link compatible
with C++, to replace OpenCL?

11

Further Reading

• D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using
data parallelism to program GPUs for general-purpose
use”, Proc. ACM ASPLOS, San Jose, CA, USA,
October 2006, DOI:10.1145/1168857.1168898

12

Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi Sidd Puri Jose Oglesby
Microsoft Research

{dtarditi,siddpuri,joseogl}@microsoft.com

Abstract
GPUs are difficult to program for general-purpose uses. Program-
mers can either learn graphics APIs and convert their applications
to use graphics pipeline operations or they can use stream program-
ming abstractions of GPUs. We describe Accelerator, a system that
uses data parallelism to program GPUs for general-purpose uses
instead. Programmers use a conventional imperative programming
language and a library that provides only high-level data-parallel
operations. No aspects of GPUs are exposed to programmers. The
library implementation compiles the data-parallel operations on the
fly to optimized GPU pixel shader code and API calls. We describe
the compilation techniques used to do this. We evaluate the effec-
tiveness of using data parallelism to program GPUs by providing
results for a set of compute-intensive benchmarks. We compare
the performance of Accelerator versions of the benchmarks against
hand-written pixel shaders. The speeds of the Accelerator versions
are typically within 50% of the speeds of hand-written pixel shader
code. Some benchmarks significantly outperform C versions on a
CPU: they are up to 18 times faster than C code running on a CPU.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers

General Terms Measurement, Performance, Experimentation,
Languages

Keywords Graphics processing units, data parallelism, just-in-
time compilation

1. Introduction
Highly programmable graphics processing units (GPUs) became
available in 2001 [10] and have evolved rapidly since then [15].
GPUs are now highly parallel processors that deliver much higher
floating-point performance for some workloads than comparable
CPUs. For example, the ATI Radeon x1900 processor has 48 pixel
shader processors, each of which is capable of 4 floating-point op-
erations per cycle, at a clock speed of 650 MHz. It has a peak
floating-point performance of over 250 GFLOPS using single-
precision floating-point numbers, counting multiply-adds as two
FLOPs. GPUs have an explicitly parallel programming model and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

their performance continues to increase as transistor counts in-
crease.

The performance available on GPUs has led to interest in using
GPUs for general-purpose programming [16, 8]. It is difficult,
however, for most programmers to program GPUs for general-
purpose uses.

In this paper, we show how to use data parallelism to program
GPUs for general-purpose uses. We start with a conventional im-
perative language, C# (which is similar to Java). We provide a li-
brary that implements an abstract data type providing data-parallel
arrays; no aspects of GPUs are exposed to programmers. The li-
brary evaluates the data-parallel operations using a GPU; all other
operations are evaluated on the CPU. For efficiency, the library
does not immediately perform data-parallel operations. Instead, it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls.

Data-parallel arrays only provide aggregate operations over en-
tire input arrays. The operations are a subset of those found in lan-
guages like APL and include element-wise arithmetic and compar-
ison operators, reduction operations (such as sum), and transfor-
mations on arrays. Data-parallel arrays are functional: each oper-
ation produces a new data-parallel array. Programmers must ex-
plicitly convert back and forth between conventional arrays and
data-parallel arrays. The lazy compilation is typically done when
a program converts a data-parallel array to a normal array.

Compiling data-parallel operations lazily to a GPU allows us to
implement the operations efficiently: the system can avoid creat-
ing large numbers of temporary data-parallel arrays and optimize
the creation of pixel shaders. It also allows us to avoid exposing
GPU details to programmers: the system manages the use of GPU
resources automatically and amortizes the cost of accessing graph-
ics APIs. Compilation at run time also allows the system to handle
properties and features that vary across GPU manufacturers and
models.

We have implemented these ideas in a system called Acceler-
ator. We evaluate the effectiveness of the approach using a set of
benchmarks for compute-intensive tasks such as image processing
and computer vision, run on several generations of GPUs from both
ATI and NVidia. We implemented the benchmarks in hand-written
pixel shader assembly for GPUs, C# using Accelerator, and C++ for
the CPU. The C# programs, including compilation overhead, are
typically within 2×of the speed of the hand-written pixel shader
programs, and sometimes exceed their speeds. The C# programs,
like the hand-written pixel shader programs, often outperform the
C++ programs (by up to 18×).

Prior work on programming GPUs for general-purpose uses ei-
ther targets the specialized GPU programming model directly or
provides a stream programming abstraction of GPUs. It is diffi-
cult to target the GPU directly. First, programmers need to learn
the graphics programming model, which is specialized to the set of

325

http://dx.doi.org/10.1145/1168857.1168898
http://dx.doi.org/10.1145/1168857.1168898

