
General Purpose GPU Programming (1)

Advanced Operating Systems
Lecture 14

Lecture Outline

• Heterogenous multi-core systems and general
purpose GPU programming

• Programming models
• Heterogenous multi-kernels

• Main core with heterogenous offload

2

Heterogeneous Instruction Set Systems

• Increasingly common for a single system to have
cores running heterogenous instruction sets
• CPU + general purpose GPU

• CPU + offload of TCP, crypto, or multimedia functions

• Cell processor with PPE + multiple SPE

• Desirable when different instruction sets have
radically different performance characteristics
• GPU hardware does simple SIMD-style computations

in parallel at high speed, but performs poorly for code
with large numbers of conditional branches

• A typical CPU is better suited for complex conditional
code, but performs poorly with SIMD-style operations

• Combination of several CPU cores and a GPU is now a
ubiquitous system design

• Other types of heterogeneity are becoming more common as
designers try to make better use of the extra transistors which
are coming available due to Moore’s law

3

Programming Models

• What programming model to use for systems with
heterogenous instruction sets?
• Radically different cores → radically different programming model?

• How are cores organised – peers or master/slave architecture?

• Three models have been explored:
• Heterogeneous multi-kernel

• Main core with heterogenous offload

• Heterogeneous virtual machines (→ next lecture)

4

Heterogeneous Multi-kernel Systems

• If cores full-featured, multi-kernel may be suitable
• Multi-kernel is a message passing distributed system – if messages have

a standardised format, processor architecture is unimportant

• Each core may run a different instruction set, since they don’t share data

• Kernel must be separately compiled for each architecture

• Applications limited to subset of cores, require compilation as fat binaries,
or use JIT compilation

• May not be possible to effectively balance load across the system, due to limitations where
certain processes can execute

• Performance may suffer if related processes can’t be co-located due to resource constraints

• Not widely implemented
• Systems with multiple full-featured cores generally have homogenous

instruction sets

5

Example: Helios

• A research prototype multi-kernel system
designed to exploit heterogenous cores

• Multi-kernel extension to Singularity
• Runs on x86 NUMA systems, and on x86 systems

with offload to an ARM processor on a RAID card

• Some cores types have limited functionality
• All kernels export the same services; all interactions

between tasks, and with kernel, use message-passing

• Some cores implement certain services by forwarding
messages to other cores

• Applications distributed as byte code
• JIT compilation, as is usual in Singularity

• Express affinity to other tasks in metadata to allow
dynamic load balancing across cores

• Interesting proof-of-concept, but only limited
functionality

6




































  

 
  

 



 

  




This figure shows a general overview of the architecture of the Helios operating system executing on a machine with one general purpose
CPU and a single programmable device. Applications co-located on the same kernel communicate via a fast, statically verified, message-
passing interface. Applications on different kernels communicate via remote message-passing channels, which transparently marshal and send
messages between satellite kernels. The numbers above the channels are affinity values provided by applications to the operating system.
Helios uses affinity values as hints to determine where a process should execute

Figure 1: Helios architecture

upon the affinity values a process expresses and the location of the
other processes with which it wishes to communicate. We note that
affinity does not prevent a process from harming its own perfor-
mance. The values are only hints, and we assume that the fact that
they are easily modified will allow poorly designed affinity policies
to be easily remedied.

2.4 Encapsulate Disparate Architectures
The last design goal for Helios is to efficiently encapsulate a

process that may run on multiple platforms while preserving the
opportunity to exploit platform-specific features. Helios achieves
this design goal by using a two-phase compilation strategy. Appli-
cations are first compiled into the common intermediate language
(CIL), which is the byte-code of the .NET platform. We expect ap-
plications to ship as CIL binaries. The second compilation phase
translates the intermediate language into the ISA of a particular
processor. Currently, all Helios applications are written in Sing#,
compiled into CIL, and then compiled again into different ISAs us-
ing a derivative of the Marmot [7] compiler called Bartok.
As an alternative, one could ship fat binaries, which would con-

tain a version of the application for each available platform it sup-
ports. Packaging an application using CIL has two advantages over
fat binaries. First, a developer that uses fat binaries must choose
ahead of time which platforms to support and fat binaries will grow
in size as the number of ISAs supported by an application increases.
Second, CIL already contains infrastructure for efficiently support-
ing multiple versions of a method. This feature allows an applica-
tion to take advantage of device-specific features if they are present,
while still functioning if these features are missing. For example,
an application could have one process that executes large amounts
of vector math. If a GPU were present, the calculations would be
accelerated, but if it were not, the process would still function us-
ing a general purpose CPU. Helios already uses this functionality
in libraries that support applications, such as code to implement

and code that implements an
primitive. The two-phase compilation strategy also means

that an older application could run on a new programmable device
without modification, as long as a compiler exists to translate from
CIL to the new instruction set.

3. IMPLEMENTATION
Figure 1 provides an overview of Helios running on a general

purpose CPU and an XScale programmable device. Each kernel
runs its own scheduler and memory manager, while the coordinator
kernel also manages the namespace, which is available to all satel-
lite kernels via remote message passing. In the example, an appli-
cation has a local message-passing channel to the file system, and a
remote message-passing channel to the networking stack, which is
executing on a programmable NIC. The numbers above each chan-
nel describe the affinity the application or service has assigned to
the channel. Since the file system and networking stack have pos-
itive affinities with their device drivers, they have been co-located
with each driver in a separate kernel. The application has expressed
positive affinity to the file system and no preference to the network-
ing stack, therefore the application runs on the same kernel as the
file system.

3.1 Singularity Background
Helios was built by modifying the Singularity RDK [22] to sup-

port satellite kernels, remote message passing, and affinity. We
begin by providing a brief overview of Singularity.
Singularity is an operating system written almost entirely in the

Sing# [6] derivative of the C# programming language. Applica-
tions in Singularity are composed of one or more processes, each
of which is composed of one or more threads. Threads share a sin-
gle address space, while processes are isolated from each other and
can only communicate via message passing. Applications written
for Singularity are type and memory safe. The operating system re-
lies on software isolation to protect processes from each other and
therefore all processes run in the same address space at the highest
privilege level (ring 0 on an x86 architecture).
Singularity supports a threading model similar to POSIX, where

threads have contexts that are visible to and scheduled by the op-
erating system. Further, threads have access to all the usual syn-
chronization primitives available in C#. Since all processes exe-
cute in the same address space and rely on software isolation, con-
text switches between processes are no more costly than context
switches between threads. Further, Singularity does not require an
MMU or a virtual address space. Virtual memory is, however, cur-

E. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel and G. Hunt,
“Helios: Heterogeneous multiprocessing with satellite kernels”,
Proc. ACM SOSP, October 2009. DOI:10.1145/1629575.1629597

http://dx.doi.org/10.1145/1629575.1629597
http://dx.doi.org/10.1145/1629575.1629597

Main Core With Heterogeneous Offload

• Typical modern hardware architecture:
• Several full-featured main processor cores, with a common instruction set,

run the main operating system

• Specialised, limited functionality, processors support the main cores, with
functions being offloaded from the main cores as appropriate

• These processors typically have radically different instruction set and/or programming model
to the main processor cores

• Example: a multicore CPU with offload of graphics to a separate GPU

• Implications for operating system design:
• Programming model for offload processors differs from the main cores

• Typically not sufficient to run a full operating system

• May be too limited to support a standard programming language

• Offload processors don’t run independently – they’re resources invoked
by the master CPU (e.g., for graphics, network stack, or crypto offload)

7

Graphics Offload Hardware

• A ubiquitous offload model is for graphics:
general purpose GPU programming

• Offload processors are GPU devices – a
large grid of compute cores designed for
SIMD-style array processing
• Thousands of cores available on modern GPUs

• Very high sequential memory bandwidth – designed
for array processing, with limited support for pointers
and arbitrary memory access

• Weak support for conditional branches – the model is
that each core runs the same code on different data
→ SIMD processing

• No access to I/O devices other than the screen;
interactions with the rest of the system via block
DMA transfers

• Parallel SIMD programming model makes
such cores unsuitable for general-purpose
programming languages
• Cannot effectively run general purpose software

8

Last Revision Date: 5/16/09 Page 20

3.2 Execution Model

Execution of an OpenCL program occurs in two parts: kernels that execute on one or more

OpenCL devices and a host program that executes on the host. The host program defines the

context for the kernels and manages their execution.

The core of the OpenCL execution model is defined by how the kernels execute. When a kernel

is submitted for execution by the host, an index space is defined. An instance of the kernel

executes for each point in this index space. This kernel instance is called a work-item and is

identified by its point in the index space, which provides a global ID for the work-item. Each

work-item executes the same code but the specific execution pathway through the code and the

data operated upon can vary per work-item.

Work-items are organized into work-groups. The work-groups provide a more coarse-grained

decomposition of the index space. Work-groups are assigned a unique work-group ID with the

same dimensionality as the index space used for the work-items. Work-items are assigned a

unique local ID within a work-group so that a single work-item can be uniquely identified by its

global ID or by a combination of its local ID and work-group ID. The work-items in a given

work-group execute concurrently on the processing elements of a single compute unit.

The index space supported in OpenCL 1.0 is called an NDRange. An NDRange is an N-

dimensional index space, where N is one, two or three. An NDRange is defined by an integer

array of length N specifying the extent of the index space in each dimension. Each work-item’s

global ID and local ID are N-dimensional tuples. The global ID components are values in the

range from zero to the number of elements in that dimension minus one.

Figure 3.1: Platform model … one host plus one or more compute devices each

with one or more compute units each with one or more processing elements.

[Source: The OpenCL specification, v1.0]

• Use multiple threads rather than loops
• Operate on entire arrays in parallel, rather than iterating over elements

• Threads may run in lock-step across thousands of cores – a branch may
disrupt execution across threads if it increases execution time

• Designed for batch array processing – “general purpose” implies flexibility
in how each element is processed

• Task scheduler on offload processor assigns work
• Implicit parallelism – programmers write kernel function, system parallelises

Programming Model

9

Core 1
Core 2
Core 3

…
Core n

Time

Example: OpenCL (1)

• An open, vendor neutral, standard for programming
general purpose GPU offload devices
• http://www.khronos.org/opencl/

• General purpose GPU code is written in OpenCL C
• An extended subset of ISO C99

• Adds built-in vector, 2D, and 3D image types

• Adds pointer qualifiers to reference host and GPU memory; use
of pointers restricted since memory is not shared between host
and device (explicitly copy inputs and outputs to/from device)

• Very restricted standard library

• Defines the concept of a kernel function that can be JIT compiled
and executed on a device

• OpenCL framework provides JIT compilation and
device management

• OpenCL runtime manages execution of code as a
large number of threads, running kernel functions
on different parts of the data

10

2Technology Brief
�%�#
�

��((�+����'�!!�!�("
	���#��)���'�"�' ��!��'�(���#�
����$"%*)�#��%$,�'��(�)����'�"�)����#�'��(���#�)���
�"$*#)�$��,$' ���
���%�'�$'"(��)�$#����	���*(��)��'���'��$+�'���"�!!�$#�%�-�!(�$#���
).%���!�(�'��#��)�����()�,�.�)$�'�%��!.�'�#��'��'�%���(��(�)$�%'$��((�"$'��)��#�$#��%�-�!�
�)���)�"���
�����(��#�'(�#$,��#�!*���!�'���#*"��'(�$��%�-�!�%'$��((�#���!�"�#)(�$#�
)���'����%(������"$'��%�-�!�%'$��((�#���!�"�#)(���
�����(��)�����()�'��)���#���!�*!�)���!!�
)���%�-�!(��#��%'$�*���)���'�(*!)�#���'�%���(�$#(�'��#������!�)�()�
��(�%'$��((�$+�'���
�*#�'���%�-�!(�(�"*!)�#�$*(!.�)$�2*��!.�'�#��'��+�#�)���"$()��$"%!�-����(��#�(�

�$+�#��	�.$#��
'�%���(
��'!.�
��(�,�'����(��#���)$�(%���1��!!.��"%!�"�#)��'�%���(�%'$�'�""�#��()�#��'�(�
(*����(��%�#
�������)���)��$*%!�#����),��#�)���!�#�*����*(����.��'�%���(�%'$�'�""�'(�
�#��)����##�'�,$' �#�(�$��)������%(��#(*'����$$��%�'�$'"�#����$'�"$()��%%!���)�$#(��
�$,�+�'��)��(�'�!�)�$#(��%�!�"�)���)����'�%���(�'�#��'�#��'��!�("�)$�$#!.�)��)�,�����
,�(���1#����#�)����'�%���(�!�#�*������$�$+�'�$"��)��(�!�"�)�)�$#��
�����(��#�'(�
�+�#)*�!!.�"����)���%�-�!�%'$��((�#���!�"�#)(��*()$"�/��!��*(�#��(%����!�/���%'$�'�"(�
��!!����'�%���(�(����'(�

�+�'�)�"�����+�!$%�'(��#��
���+�#�$'(��+$!+���(����'(��'$"�(�"%!���((�"�!.�!�#�*����
%'$�'�"(��#)$������!�+�!�%'$�'�"(�)��)��'��)��)����"�/�#�!.�'����(��#�(��$*#���#�)$��.0(�
���($�),�'����$���#�!���#�'��(�#��(����'��$"%!�-�).��)���+�')�-��#��%�-�!�%'$��((�#��
�!�"�#)(�,�'��'���(��#���)$�(*%%$')�"$'����#�'�!�/���"�)���!$������#��2$,��$#)'$!�
$%�'�)�$#(�����(�(�)�)���()�����$'���#�,�,�.�)$�����!�'�)���$"%*)�)�$#�

��'#�((�#��)����$,�'�$��)���
��
�%%!��'��!�/���)��)�)���)'�#�(��#�
�����(��#(�$3�'����#��#�'����!��$%%$')*#�).�)$�)� ��
)���
�����.$#���'�%���(���!!�)��)�,�(�#������,�(���#$#�'�%���(�����)��)��$*!���#�����
)����"�'��#��%'$�'�""��!���(%��)(�$��)���
����#������((��)(��""�#(��%$,�'���%�#
��
�(�)��)�)���#$!$�.����!�+�'�#��)���"��#(��$'��#.��%%!���)�$#�)$�����((�)���(*%�'�$"%*)�'�
!� ��%�'�$'"�#���$��)���"$��'#�
���

�%�#
���%�
!$(�
�%�#
���(���(��#����'$"�)����'$*#��*%�)$�����!�'�)���%%!���)�$#�%�'�$'"�#����.�*(�#��
)���
����$'���#�'�!�%*'%$(���$"%*)�)�$#(���)��(����$"%!�)���'�"�,$' ��$"%$(���$���#�
�%%'$�����!��
���(���!�#�*����,�)��(*%%$')��$'�%�'�!!�!�("���#�����)��)��!!$,(��%%!����
)�$#(�)$�*(��$#��$'�"$'���%�#
����+���(��
��(��
��(���#��($�$#���#�)���(.()�"���#����
2�-��!��'*#)�"��

OpenCL framework

Application

OpenCL runtime

Driver

GPU hardware

OpenCL kernels

OpenCL C languageOpenCL API

The OpenCL architecture

More on graphics shaders
�����'(��'��+�'.�(%����!�/���%'$�'�"(�)��)�
�!!$,�(%���1��%'$��((�#��()�%(��#���
���)$�
���'�%'$�'�""���������'(��!!$,��$""$#�
����'�%���(�$%�'�)�$#(��(*����(�+�')�-�
)'�#(�$'"�)�$#��#��%�-�!��$!$'���!�*!�)�$#(��
)$�������#����)$�(*�)�)���#���(�$��)���
($�),�'����+�!$%�'�,�)�$*)�'�&*�'�#����
,�$!��#�,��'�%���(�����

Also works with the CPU
�%�#
���(���!��)$��4���#)!.�*(��
"*!)��$'��
��(��,������!!$,(�(.()�"(�
,�)�$*)��#��%�#
����%��!��
���)$�
��#�1)��'$"��)(���%���!�)��(�

S
ou

rc
e:

 A
pp

le
, O

pe
nC

L
te

ch
no

lo
gy

 b
rie

f

Example: OpenCL (2)

• Main component of OpenCL C programs: kernel functions executed on device
• The global qualifier on pointers specifies memory region on which they operate

• The get_global_id(…) API function identifies work item currently being processed by this kernel

• Groups of kernel functions are queued to operate on offload device
• Kernel functions JIT-compiled and code cached when queued for execution

• Sizes of vectors and arrays on which they operate specified when enqueueing work

• Execution of kernels is parallel and asynchronous to main processors

• Complex low-level API provided for querying device capabilities, offloading
work onto the device

11

© Copyright Khronos Group, 2011 - Page 13

The BIG Idea behind OpenCL
•OpenCL execution model …
- Define N-dimensional computation domain
- Execute a kernel at each point in computation domain

void
trad_mul(int n,
 const float *a,
 const float *b,
 float *c)
{
 int i;
 for (i=0; i<n; i++)
 c[i] = a[i] * b[i];
}

Traditional loops
kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

S
ou

rc
e:

 K
hr

on
os

 G
ro

up
, O

pe
nC

L
O

ve
rv

ie
w

Example: OpenCL (3)

12

© Copyright Khronos Group, 2011 - Page 45

get_global_id(0)

10

Kernel
• A data-parallel function executed for each work-item

kernel void square(global float* input, global float* output)
{
 int i = get_global_id(0);
 output[i] = input[i] * input[i];
}

Input

Output 36 1 1 0 81 4 16 1 1 81 36 1 4 4 1 81 64 16 1 81 4 0 0 49 64

6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8

49

Source: Khronos Group, OpenCL Overview

• Extended subset of C is familiar for programmers

• A cleaner model might be a purely functional language, with built-in array and
vector types
• Explicitly operate on arrays, with compiler implicitly deriving kernel functions

• Rather than explicitly operating on kernel functions, with array dimensions defined to runtime
library implicitly via OpenCL API calls

Integration With Main Operating System

• Host operating system manages offload hardware
• Responsible for loading code onto the offload device

• Responsible for scheduling execution of code on the offload device

• Offload devices do not run an OS – they’re dumb devices, managed by a
device driver

• Low-level API and programming model
• High conceptual burden to use

• Cannot run general purpose code; programming and communications
model is too restricted

• Does not easily integrate with host applications – too much boilerplate

13

Discussion and Further Reading

• Ofer Rosenberg, “OpenCL Overview”, Khronos
Group, November 2011.
http://www.khronos.org/assets/uploads/
developers/library/overview/opencl-overview.pdf

• Complexity versus performance trade-off in
OpenCL – how much does this limit usefulness?

• How might SIMD-style processing be more
cleanly incorporated into modern languages?

14

OpenCL Overview
Ofer Rosenberg, AMD

November 2011

1.2

http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf

