P Unaversity | School of
of Glasgow | Computing Science

General Purpose GPU Programming (1)

Advanced Operating Systems
Lecture 14

Lecture Outline

® Heterogenous multi-core systems and general
purpose GPU programming

® Programming models

e Heterogenous multi-kernels

e Main core with heterogenous offload

Heterogeneous Instruction Set Systems

® |ncreasingly common for a single system to have
cores running heterogenous instruction sets

CPU + general purpose GPU
CPU + offload of TCP, crypto, or multimedia functions
Cell processor with PPE + multiple SPE

e Desirable when different instruction sets have
radically different performance characteristics

GPU hardware does simple SIMD-style computations
in parallel at high speed, but performs poorly for code
with large numbers of conditional branches

A typical CPU is better suited for complex conditional
code, but performs poorly with SIMD-style operations

Combination of several CPU cores and a GPU is now a
ubiquitous system design

Other types of heterogeneity are becoming more common as
designers try to make better use of the extra transistors which
are coming available due to Moore’s law

Cell Broadband Engine Processor

ﬂ"i‘
vl

—
%

13
TAS
=
Fetd

F

Programming Models

e \Vhat programming model to use for systems with
heterogenous instruction sets?

e Radically different cores — radically different programming model?

e How are cores organised — peers or master/slave architecture?

® Three models have been explored:

e Heterogeneous multi-kernel
e Main core with heterogenous offload

® Heterogeneous virtual machines (— next lecture)

Heterogeneous Multi-kernel Systems

e |f cores full-featured, multi-kernel may be suitable

e Multi-kernel is a message passing distributed system — if messages have
a standardised format, processor architecture is unimportant

e Each core may run a different instruction set, since they don’t share data
e Kernel must be separately compiled for each architecture

e Applications limited to subset of cores, require compilation as fat binaries,
or use JIT compilation

° May not be possible to effectively balance load across the system, due to limitations where
certain processes can execute

° Performance may suffer if related processes can’t be co-located due to resource constraints

¢ Not widely implemented

e Systems with multiple full-featured cores generally have homogenous
Instruction sets

Example: Helios

® A research prototype multi-kernel system 8 (.05 Ll & 5.8
. : 5 2] 2 [8 & 26
designed to exploit heterogenous cores s el |5k wEANE
— [<C
e Multi-kernel extension to Singularity
Hardware abstraction Iayerl DMA DMA l Hardware abstraction layer
i Runs on x86 NUMA SyStemS’ and on x86 SyStemS Coordinator kernel Satellite kernel
with offload to an ARM processor on a RAID card x86 XScale Programmable Device
® Some cores types have limited functionality =5 Localchannel]| Remote channel stub
e All kernels export the same services; all interactions
between tasks, and with kernel, use message-passing
e Some cores implement certain services by forwarding
messages to other cores
e Applications distributed as byte code "'E'"ﬁi.'g};i;;g;i;6"i4'c;5;<;};"%&"Méui'r'o"y'"c':"i%';v'v'&'.{z;i';rﬁ'é'"ﬁijﬁt'"

“Helios: Heterogeneous multiprocessing with satellite kernels”,

e JIT compilation, as is usual in Singularity Proc ACM SOSP, October 2009. DOI:10.1145/1629575.1629597 .

e Express affinity to other tasks in metadata to allow
dynamic load balancing across cores
® |[nteresting proof-of-concept, but only limited
functionality

http://dx.doi.org/10.1145/1629575.1629597
http://dx.doi.org/10.1145/1629575.1629597

Main Core With Heterogeneous Offload

¢ T[ypical modern hardware architecture:

e Several full-featured main processor cores, with a common instruction set,
run the main operating system

® Specialised, limited functionality, processors support the main cores, with
functions being offloaded from the main cores as appropriate

° These processors typically have radically different instruction set and/or programming model
to the main processor cores

° Example: a multicore CPU with offload of graphics to a separate GPU

® |mplications for operating system design:

® Programming model for offload processors differs from the main cores

o Typically not sufficient to run a full operating system

° May be too limited to support a standard programming language

e Offload processors don’t run independently — they’'re resources invoked
by the master CPU (e.g., for graphics, network stack, or crypto offload)

Graphics Offload Hardware

e A ubiquitous offload model is for graphics:
general purpose GPU programming

e Offload processors are GPU devices — a
large grid of compute cores designed for
SIMD-style array processing

e Thousands of cores available on modern GPUs

e Very high sequential memory bandwidth — designed
for array processing, with limited support for pointers
and arbitrary memory access

e \Weak support for conditional branches — the model is
that each core runs the same code on different data
— SIMD processing

e No access to I/O devices other than the screen;
interactions with the rest of the system via block
DMA transfers

e Parallel SIMD programming model makes
such cores unsuitable for general-purpose
programming languages

e Cannot effectively run general purpose software

Processing o H
[1 1]
Element \\ ¥ I’]I 'ﬂl 1]

Host

A
Compute Unit

Compute Device

Programming Model

e Use multiple threads rather than loops

e Operate on entire arrays in parallel, rather than iterating over elements

e Threads may run in lock-step across thousands of cores — a branch may
disrupt execution across threads if it increases execution time

COre1 [11 11 11 11 11 11 11 11 | [11 11 |
Core2 [11 11 1 | 11 11 11 11 | [11 11 |
Core3 I 11 11 11 11 11 11 11 | N | 11 11 |

COren | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] | 1 1 1 1]

Time

e Designed for batch array processing — “general purpose” implies flexibility
In how each element is processed

e Task scheduler on offload processor assigns work

e |mplicit parallelism — programmers write kernel function, system parallelises

9

Example: OpenCL (1)

® An open, vendor neutral, standard for programming
general purpose GPU offload devices

http://www.khronos.org/opencl/

e (General purpose GPU code is written in OpenCL C

An extended subset of ISO C99
Adds built-in vector, 2D, and 3D image types

Adds pointer qualifiers to reference host and GPU memory; use
of pointers restricted since memory is not shared between host
and device (explicitly copy inputs and outputs to/from device)

Very restricted standard library
Defines the concept of a kernel function that can be JIT compiled
and executed on a device

OpenCL framework provides JIT compilation and
device management

OpenCL runtime manages execution of code as a
large number of threads, running kernel functions
on different parts of the data

10

The OpenCL architecture

Application

OpenCL kernels

OpenCL framework

OpenCL runtime

Driver

GPU hardware

Example: OpenCL (2)

void kernel void
trad mul (int n, dp mul (global const float *a,
const float *a, global const float *b,
const float *b, global float *c)
float *c) {
{ » int id = get _global id(0);
int i;
for (i=0; i<n; i++) c[id] = a[id] * b[id];
c[i] = a[i] * Db[i];
} } // execute over “n” work-items

e Main component of OpenCL C programs: kernel functions executed on device
e The global qualifier on pointers specifies memory region on which they operate

e Theget global id(..) API function identifies work item currently being processed by this kernel

e Groups of kernel functions are queued to operate on offload device

e Kernel functions JIT-compiled and code cached when queued for execution
e Sizes of vectors and arrays on which they operate specified when enqueueing work

e Execution of kernels is parallel and asynchronous to main processors

e Complex low-level API provided for querying device capabilities, offloading
work onto the device

11

Example: OpenCL (3)

kernel void square (global float* input, global float* output)

{
int i = get global id(0);
output[i] = input[i] * input[i];
}

get global id(0)

10
Input | 6 | 1| 1|0| 9|24 1|/1|9|7|6|1|2|2|1|9|8|4/1/9 2/0|0|7]|38

v

Output (36| 1| 1|0 |8 | 4|16 1|1 |81 (49(36| 1|4 | 4| 1|81 |64/16(1|81 | 4| 0| 04964

e Extended subset of C is familiar for programmers

e A cleaner model might be a purely functional language, with built-in array and
vector types

e Explicitly operate on arrays, with compiler implicitly deriving kernel functions

e Rather than explicitly operating on kernel functions, with array dimensions defined to runtime
library implicitly via OpenCL API calls

12

Integration With Main Operating System

® Host operating system manages offload hardware

Responsible for loading code onto the offload device
Responsible for scheduling execution of code on the offload device

Offload devices do not run an OS — they’'re dumb devices, managed by a
device driver

e | ow-level APl and programming model

High conceptual burden to use

Cannot run general purpose code; programming and communications
model is too restricted

Does not easily integrate with host applications — too much boilerplate

13

Discussion and Further Reading

Ofer Rosenberg, “OpenCL Overview”, Khronos
Group, November 2011.
http://www.khronos.org/assets/uploads/
developers/library/overview/opencl-overview.pdf

Complexity versus performance trade-off in
OpenCL — how much does this limit usefulness?

How might SIMD-style processing be more
cleanly incorporated into modern languages?

14

“E;‘r\,ﬁ \

S
]

OpenCL, ,

OpenCL Overview

GGGGG

Ofer Rosenberg, AMD
November 2011

http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf

