P Unaversity | School of
of Glasgow | Computing Science

Message Passing (2)

Advanced Operating Systems
Lecture 12

Lecture Outline

® |Message handling

e Pattern matching and state machines
¢ Remote actors

e System upgrade and evolution

® Error handling in message passing systems

Message Handling

Receivers pattern match against messages

Match against message types, not just values

Type system ensures exhaustive match

Enqueue for
other actors

Messages queued for processing

Enqueue operation is non-blocking

Dispatcher manages a thread pool servicing
receiver components of the actors

Receivers operate in message processing loop —
single-threaded, with no concern for concurrency

Sent messages enqueued for processing by other
actors

Ly

Mailbox
Queue

Message

Message

Message

Message

h..
-~ P

Receiver |--. .

Process

Dispatcher |4

.' Request next

Use Immutable Messages

® Runtime ensures a receiver processes messages
sequentially, but it is part of a concurrent system

Sending and receiving actors may run concurrently

Message data is shared between sender and receiver

® |mportant to ensure message data is immutable

Or, at least, never mutated once the message has been sent

Erlang ensures this in the language — races due to shared message data
not possible

Scala+Akka requires programmer discipline — potential race conditions if
message data modified after message sent

Ownership Transfer — Linear Types

e Alternative to immutability: type system ensures
ownership of message data is transferred

e A variable with /inear type may be used only once;
it goes out of scope after use

e Potentially useful when sharing mutable data
between threads

e Implement sharing via a sendMessage function that takes a
linear type for the data to be shared

e Message data consumed by the sendMessage function and
the receiver, and so can’t be used by the sender once the
message has been sent

e Data doesn’t need to be locked, since it can only be used by
one thread at once

® The compiler enforces that linear data is not
shared between threads

linear int x = 5;
int y = x;
int z =x + 1; // error

linear int x = §5;
linear int y = foo(x);
sendMessage (dest, y);
int z=y +1 // error

R. Ennals et al, Linear Types for Packet Processing, Proceedings of the European Symposium
Eon Programming, Barcelona, March 2004. http://www.cl.cam.ac.uk/~am21/papers/esop04.pdf :

Efficiency of Message Passing

e Assuming immutable message or linear w Process 2 Process 3
types, message passing has an efficient

implementation ;Tl/ \\/\ ~

|
I
e Copy message data in distributed systems ' - 7

\ -

- T
e Pass pointer to data in shared memory systems v { BehangeHeap /

\ /
R *-

° Neither case needs to consider shared access to
message data

[G. Hunt et al., Sealing OS processes to improve dependability and safety.
In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]

e (Garbage collected systems often allocate
messages from a shared exchange heap

e (Collected separately from per-process heaps

e Expensive to collect, since data in exchange heap
owned by multiple threads — need synchronisation

e Per-process heaps can be collected independently
and concurrently — ensures good performance

Patterns and State Machines

® A set of states and transitions triggered by/causing
events forms a state machine

® An actor comprises a set of events — messages — and various states —

functions — that process events as they are received

Pattern matching operation dictates response to different types of events
In each state

® Discussed the idea for device driver robustness —
but natural for message passing actors

e Message passing code naturally contains a formalised description of the

state machine

Example: Singularity State Machines

START

IDevicelnfo

?RegisterForEvents

|O_CONFIGURE_BEGIN

lInvalidParameters l?SetParameters

|I0_CONFIGURE_ACK

2ConfigurelO lg3uccess

|O_CONFIGURED

?StartIOl ?PacketForReceive

|O_RUNNING

?GetReceivedPacket

e Singularity devices drivers are an example formal
state machine in a message passing system

contract NicDevice {
out message DeviceInfo(...); _
in message RegisterForEvents(NicEvents.EXp:READY
c);

in message SetParameters(...);

out message InvalidParameters(...);

out message Success();

in message StartIo();

in message ConfigureIio();

in message PacketForReceive(byte[] in ExHeap p);
ogt message BadPacketSize(byte[] in ExHeap p, int
m);

in message GetReceivedPacket();

out message ReceivedPacket(Packet * in ExHeap p);
out message NoPacket();

state START: one {
DeviceInfo! - IO_CONFIGURE_BEGIN;

}
State_IO_CONFIGURE_BEGIN: one {
RegisterForeEvents? -
SetParameters? - IO_CONFIGURE_ACK;

ks

state IO_CONFIGURE_ACK: one {
InvalidParameters! - IO_CONFIGURE_BEGIN;
Success! - IO_CONFIGURED;

state IO_CONFIGURED: one {
StartIO? - IO_RUNNING;
ConfigureIO? - IO_CONFIGURE_BEGIN;

state IO_RUNNING: one {
PacketForReceive? - (Success! or BadPacketSize!)
- TO_RUNNING;
GetReceivedPacket? -» (ReceivedPacket! or
NoPacket!)
- TO_RUNNING;

}
}

Listing 1. Contract to access a network device driver.

[G. Hunt and J. Larus. Singularity: Rethinking the software stack. ACM
SIGOPS OS Review, 41(2), Apr. 2007. DOI 10.1145/1243418.1243424]

Example: Singularity State Machines

e (Contract defines the state machine — essentially an abstract type

¢ |mplementation uses pattern matching NicDevice. Exp:lO_RUNNING nicClient ..

against received messages switch receive { T the state
case nicClient . PacketForReceive(buf):
° A function for each state // add buf to the available \buffers , reply

e Each function switches based on the type of case nicClient . GetReceivedPacket ()
the message object received // send back a buffer with“packet da

if available

case nicClient . ChannelClosed(): meS_Sage_S that can be
// client closed channel received in that state

}

e Compiler checks that switch receive

statements handle all messages defined
[M. Fahndrich et al. Language support for fast and reliable
by th e Contra Ct message-based communication in Singularity OS. Proc.

EuroSys 2006. DOI 10.1145/1218063.1217953]

° Blocks in the switch receive statement must end with
a transfer of control, to a function representing a new
state or to itself, allowing compiler to check transitions

e Messages are immutable messages sent between actors

Modelling State Machine Correctness

e |f state machine is formally defined in code, we can
begin to verify it
e Check that the code implements the defined state machine

® (Check the state machine itself

® Validate that the driver cannot deadlock

® Validate that certain states can be reached

° [discussed further in the MRS4 course]

e (Code can readily be translated into (fragments of) a Promela model, for
example, suitable for verification with a model checker such as SPIN

10

Remote Actors

® [wo approaches to identifying message receiver:

e Recelver is anonymous, but bound to named channel

e Receiver is explicitly named as message destination

® Both required a named destination for messages

e Trivial to make this an opaque URL for the application, but meaningful to
the runtime — can identify remote actors

® Since messages either immutable or linearly typed, data can be safely
copied across the network

® Most message passing systems allow transparent
use of remote actors

11

System Upgrade and Evolution

e Message passing allows for easy system upgrade

Rather than passing messages directly to server, pass via proxy

Proxy can load a new version of the server and redirect
messages, without disrupting existing clients

Eventually, all clients are talking to the new server; old server is
garbage collected

e Allows for gradual transparent system upgrade

A running system can be upgraded without disrupting service

e Use of dynamic typing can make the upgrade easier

New components of the system can generate additional
messages, which are ignored by old components

Supervisor hierarchy allows system to notice if components fail,
and fallback to known good version

Backwards compatible extensions are simple to add in this
manner

12

Old
Server

Error Handling

® The system is massively concurrent — errors in one
part can be handled elsewhere

¢ Error handling philosophy in Erlang:

e | et some other process do the error recovery

e |f you can’t do what you want to do, die

e |etitcrash

® Do not program defensively

J. Armstrong, “Making reliable distributed systems in the presence
of software errors”, PhD thesis, KTH, Stockholm, December 2003,
http://www.sics.se/~joe/thesis/armstrong_thesis 2003.pdf

® Be concerned with the overall system reliability, not
the reliability of any one component

13

http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

Let It Crash

® |n a single-process system, that process must be
responsible for handling errors

e |f the single process fails, then the entire application has failed
® |n a multi-process system, each individual process
IS less precious — it's just one of many
e (Changes the philosophy of error handling

® A process which encounters a problem should not try to handle that
problem — instead, fail loudly, cleanly, and quickly “let it crash”

e | et another process cleanup and deal with the problem

® Processes become much simpler, since they're not cluttered with error
handling code

14

Remote Error Handling

e How to handle errors in a concurrent distributed
system?

e |[solate the problem, let an unaffected process be responsible
for recovery

e Don’t trust the faulty component
e Analogy to hardware fault tolerance

® Processes are linked, and the runtime is set to CEXIT’, PID, Reason)
. PID1
trap errors and send a message to the linked

process on failure

® e.g., process PID2 has requested naotification of failure of
PID1; runtime sends an “EXIT” message on failure, to tell
PID2 that PID1 failed, and why

e Process PID2 then restarts PID1, and any other dependent
processes

15

Supervision Hierarchies

e Organise problems into tree-structured groups
of processes, letting the higher nodes in the tree

monitor and correct errors in the lower nodes o

® Supervision trees are trees of supervisors — processes that .7 "s.Supervisor tree
monitor other processes in the system R :

e Supervisors monitor workers — which perform tasks — or
other supervisors

e Workers are instances of behaviours — processes whose
operation is characterised by callback functions (i.e., the
Erlang equivalent of objects)

o E.g., server, event handler, finite state machine, supervisor, application

e Abstract common behaviours into objects

e \Workers managed by supervisor processes that
restart them in the case of failure, or otherwise
handle errors

16

Robustness of Erlang Systems

e Example: Ericsson AXD301 ATM switch

e Dimensioned to handle ~50,000 simultaneous flows
with ~120 in setup or teardown phase at any one time

® Processes ATM traffic at 160 gigabits per second
(16 x 10Gbps links)

e ~1.1 million lines of Erlang
In 2248 Erlang modules

|
' HE

e ~40 programmers

17

Robustness of Erlang Systems

e Example: Ericsson AXD301 ATM switch

e 99.9999999% reliable in real-world deployment on 11 routers at a major
Ericsson customer (~0.5 seconds downtime per year)

® Yet, failures do occur, and are handled by the supervision hierarchy and
distributed error recovery

e Employs restart-and-recover semantics per-connection

e Failures may disrupts one connection out of tens-of-thousands — assumes
failures are transient; system doesn’t employ multi-version programming

18

Discussion

® The let-it-crash philosophy changes error handling,
moving it out-of-process

® There are a few compelling case studies to show it
can work well in some domains

® |s this a generally appropriate error-nandling tool?

19

