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Lecture Outline

• Message handling 

• Pattern matching and state machines

• Remote actors

• System upgrade and evolution

• Error handling in message passing systems
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Message Handling

• Receivers pattern match against messages
• Match against message types, not just values

• Type system ensures exhaustive match

• Messages queued for processing
• Enqueue operation is non-blocking

• Dispatcher manages a thread pool servicing 
receiver components of the actors

• Receivers operate in message processing loop –
single-threaded, with no concern for concurrency 

• Sent messages enqueued for processing by other 
actors
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Use Immutable Messages

• Runtime ensures a receiver processes messages 
sequentially, but it is part of a concurrent system
• Sending and receiving actors may run concurrently

• Message data is shared between sender and receiver

• Important to ensure message data is immutable
• Or, at least, never mutated once the message has been sent

• Erlang ensures this in the language → races due to shared message data 
not possible 

• Scala+Akka requires programmer discipline → potential race conditions if 
message data modified after message sent
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Ownership Transfer – Linear Types

• Alternative to immutability: type system ensures 
ownership of message data is transferred

• A variable with linear type may be used only once; 
it goes out of scope after use

• Potentially useful when sharing mutable data 
between threads
• Implement sharing via a sendMessage function that takes a 

linear type for the data to be shared

• Message data consumed by the sendMessage function and 
the receiver, and so can’t be used by the sender once the 
message has been sent

• Data doesn’t need to be locked, since it can only be used by 
one thread at once

• The compiler enforces that linear data is not 
shared between threads
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linear int x = 5;
int y = x;
int z = x + 1; // error

linear int x = 5;
linear int y = foo(x);
sendMessage(dest, y);
int z = y + 1  // error

R. Ennals et al, Linear Types for Packet Processing, Proceedings of the European Symposium 
on Programming, Barcelona, March 2004. http://www.cl.cam.ac.uk/~am21/papers/esop04.pdf



Efficiency of Message Passing

• Assuming immutable message or linear 
types, message passing has an efficient 
implementation
• Copy message data in distributed systems

• Pass pointer to data in shared memory systems

• Neither case needs to consider shared access to 
message data

• Garbage collected systems often allocate 
messages from a shared exchange heap
• Collected separately from per-process heaps

• Expensive to collect, since data in exchange heap 
owned by multiple threads – need synchronisation

• Per-process heaps can be collected independently 
and concurrently – ensures good performance
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Singularity communication mechanisms and kernel API do 
not allow pointers to be passed from one SIP to another. 
Taken together, these mechanisms ensure the sealed 
process invariants, even for SIPs executing in the same 
address space. 

A SIP starts with a single thread, enough memory to hold 
its code, an initial set of channel endpoints, and a small 
heap. It obtains additional memory by calling the kernel@s 
page manager, which returns new, unshared pages. These 
pages need not be adjacent to the SIP@s existing address 
space, since safe programming languages do not require 
contiguous address spaces.  

Because user code is verified safe, several SIPs can share 
the same address space. Moreover, SIPS can safely 
execute at the same privileged level as the kernel. 
Eliminating these hardware protection barriers reduces the 
cost to create and switch contexts between SIPs. 

Low cost, in turn, makes it practical to use SIPs as a fine-
grain isolation and extension mechanism. With software 
isolation, system calls and inter-process communication 
execute significantly faster (30L500%) and 
communication-intensive programs run up to 33% faster 
than on hardware-protected operating systems. Aiken et al. 
[2] present an extensive comparison of hardware and 
software isolation in Singularity.  

SIPs are created from a signed manifest [39]. The manifest 
describes the SIP@s code, resources, and dependencies on 
the kernel and on other SIPs. All code within a SIP must 
be listed in the manifest. Singularity SIP manifests are 
entirely declarative. They describe the desired state of the 
application configuration after an installation, not the 
algorithm for installing the application. This frees the OS 
to employ consistent algorithms to update system 
configuration and to verify that an update has the desired 
effect. 

Upon creation, SIPs receive an immutable security 
principal name based on their manifest. Because SIPs are 
sealed, security policies can place high confidence that a 
SIP will not be subverted by third party code. Wobber et 
al. [51] describe how the Singularity security architecture 
builds robust security policies on the foundation of sealed 
processes. 

3.3. Light-Weight Language Runtime 
Unlike previous systems that relied on language safety 
(e.g., Smalltalk, Cedar/Mesa, etc.), Singularity SIPs 
execute autonomously. Each SIP contains its own memory 
pages, language runtime, and garbage collector (GC). 
Moreover, even communicating SIPs need not share a 
common runtime or GC.  

Because of the state isolation invariant, the runtime and 
garbage collector can employ data layout and GC 
algorithms appropriate for code in a particular SIP. 
Experience and the large number of published garbage 
collection algorithms strongly suggest that no one garbage 
collector is appropriate for all applications [17]. 
Singularity@s sealed process architecture decouples the 
algorithm, data structures, and execution of each SIP@s 
garbage collector. Each SIP can select a GC to 
accommodate its objectives. Moreover, the GC in a SIP 
can run without coordinating with any other SIP.  

A light-weight, customizable runtime is an integral part of 
Singularity@s implementation of the closed process 
architecture because it allows developers to use SIPs 
liberally without incurring large memory overheads. 
Because programs are compiled to native code at install 
time, Singularity@s language runtime can be quite small. 
The language runtime includes a GC, exception handling 
mechanisms, and a limited amount of reflection to 
determine the type of objects at runtime. Above the 
language runtime sits the base class library. Because SIPs 
are sealed, Bartok can reduce the footprint of the runtime 
and base class library even further by removing unused 
code, a process called \tree shaking] [16]. 

3.4. Channels 
Singularity SIPs communicate exclusively by sending 
messages over channels [14]. Channels enforce stronger 
semantics than the low-level IPC mechanisms of other 
systems. Channel communication is governed by statically 
verified channel contracts, which describe messages, 
message field types, and valid message interaction 
sequences as finite state machines. 

Messages are tagged collections of values or message 
blocks in the Exchange Heap. Object references are 
excluded from messages by the type system. Messages are 
ownership is transferred from a sending SIP to a receiving 
SIP during communication. 

Endpoints and message data reside in a special set of pages 
known as the Exchange Heap. The Exchange Heap is not 
garbage collected, but instead uses reference counts to 

Exchange Heap

Process 1 Process 2 Process 3

 
Figure 2. The Exchange Heap. [G. Hunt et al., Sealing OS processes to improve dependability and safety. 

In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]



Patterns and State Machines

• A set of states and transitions triggered by/causing 
events forms a state machine
• An actor comprises a set of events – messages – and various states – 

functions – that process events as they are received

• Pattern matching operation dictates response to different types of events 
in each state

• Discussed the idea for device driver robustness – 
but natural for message passing actors
• Message passing code naturally contains a formalised description of the 

state machine
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Example: Singularity State Machines

• Singularity devices drivers are an example formal 
state machine in a message passing system
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A key experiment in the Singularity project is to construct an 
entire operating system using SIPs and demonstrate that the 
resulting system is more dependable than a conventional system. 
The results so far are promising. SIPs are cheap enough to fit a 

software development granularity of one developer or 
team per SIP and light-weight enough to provide fault-stop 
boundaries for aberrant behavior. 

2.2 Contract-Based Channels 
All communication between SIPs in Singularity flows through 
contract-based channels. A channel is a bi-directional message 
conduit with exactly two endpoints. A channel provides a lossless, 
in-order message queue. Semantically, each endpoint has a 
receive queue. Sending on an endpoint enqueues a message on the 

queue. A channel endpoint belongs to 
exactly one thread at a time. Only the owning thread 
can dequeue messages from its receive queue or send messages to 
its peer. 
Communication across a channel is described by a channel 
contract. The two ends of a channel are not symmetric in a 
contract. One endpoint is the importing end (Imp) and the other is 
the exporting end (Exp). In the Sing# language, the endpoints are 
distinguished by types C.Imp and C.Exp, respectively, where C is 
the channel contract governing the interaction. 
Channel contracts are declared in the Sing# language. A contract 
consists of message declarations and a set of named protocol 
states. Message declarations state the number and types of 
arguments for each message and an optional message direction. 
Each state specifies the possible message sequences leading to 
other states in the state machine. 
We will explain channel contracts through a condensed version of 
the contract for network device drivers shown in Listing 1. A 
channel contract is written from the perspective of the SIP 
exporting a service and starts in the first listed state. Message 
sequences consist of a message tag and a message direction sign 
(! for Exp to Imp), and (? for Imp to Exp). The message direction 
signs are not strictly necessary if message declarations already 
contain a direction (in, out), but the signs make the state 
machine more human-readable. 
In our example, the first state is START and the network device 
driver starts the conversation by sending the client (probably the 
network stack) information about the device via message 
DeviceInfo. After that the conversation is in the 
IO_CONFIGURE_BEGIN state, where the client must send message 
RegisterForEvents to register another channel for receiving 
events and set various parameters in order to get the conversation 
into the IO_CONFIGURED state. If something goes wrong during 
the parameter setting, the driver can force the client to start the 
configuration again by sending message InvalidParameters.
Once the conversation is in the IO_CONFIGURED state, the client 
can either start I/O (by sending StartIO), or reconfigure the 
driver (ConfigureIO). If I/O is started, the conversation is in 

state IO_RUNNING. In state IO_RUNNING, the client provides the 
driver with packet buffers to be used for incoming packets 
(message PacketForReceive). The driver may respond with 
BadPacketSize, returning the buffer and indicating the size 
expected. This way, the client can provide the driver with a 
number of buffers for incoming packets. The client can ask for 
packets with received data through message GetReceived-
Packet and the driver either returns such a packet via 
ReceivedPacket or states that there are no more packets with 
data (NoPacket). Similar message sequences are present for 
transmitting packets, but we elide them in the example. 
From the channel contract it appears that the client polls the driver 
to retrieve packets. However, we have not yet explained the 
argument of message RegisterForEvents. The argument of 
type NicEvents.Exp:READY describes an Exp channel endpoint 
of contract NicEvents in state READY. This endpoint argument 
establishes a second channel between the client and the network 
driver over which the driver notifies the client of important events 
(such as the beginning of a burst of packet arrivals). The client 
retrieves packets when it is ready through the NicDevice
channel. Figure 2 shows the configuration of channels between 
the client and the network driver. The NicEvents contract 
appears in Listing 2. 

contract NicDevice { 
oout message DeviceInfo(...); 
iin  message RegisterForEvents(NicEvents.Exp:READY 
c); 
iin  message SetParameters(...); 
oout message InvalidParameters(...); 
oout message Success(); 
iin  message StartIO(); 
iin  message ConfigureIO(); 
iin  message PacketForReceive(byte[] in ExHeap p); 
oout message BadPacketSize(byte[] in ExHeap p, int 
m); 
iin  message GetReceivedPacket(); 
oout message ReceivedPacket(Packet * in ExHeap p); 
oout message NoPacket(); 
 
sstate START: one { 

 
} 
sstate IO_CONFIGURE_BEGIN: oone { 

 
 

} 
sstate IO_CONFIGURE_ACK: oone { 

 
IO_CONFIGURED; 

} 
sstate IO_CONFIGURED: oone { 

 
ConfigureIO?  IO_CONFIGURE_BEGIN; 

} 
sstate IO_RUNNING: oone { 

(Success! or BadPacketSize!) 
 

 or 
NoPacket!) 

 
... 

} 
} 

Listing 1. Contract to access a network device driver. 
contract NicEvents { 

eenum NicEventType { 
NoEvent, ReceiveEvent, TransmitEvent, LinkEvent 

} 
 
oout message NicEvent(NicEventType e); 
iin message AckEvent(); 
 
state READY: oone { 

AckEvent? !READY; 
} 

} 

Listing 2. Contract for network device events. 

Figure 2. Channels between a network driver and stack. 

NicDevice

NetStack NIC DriverNicEvents

Imp

Imp

Exp

Exp
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[G. Hunt and J. Larus. Singularity: Rethinking the software stack. ACM 
SIGOPS OS Review, 41(2), Apr. 2007. DOI 10.1145/1243418.1243424]



Example: Singularity State Machines

• Contract defines the state machine – essentially an abstract type

• Implementation uses pattern matching
 against received messages
• A function for each state

• Each function switches based on the type of
the message object received

• Compiler checks that switch receive 
statements handle all messages defined
by the contract
• Blocks in the switch receive statement must end with 

a transfer of control, to a function representing a new
state or to itself, allowing compiler to check transitions

• Messages are immutable messages sent between actors
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ExpImp

NicEvents
ExpImp

Figure 2: Channels between network driver and netstack

the IO CONFIGURE BEGIN state, where the client must send
message RegisterForEvents to register another channel for re-
ceiving events and set various parameters in order to get
the conversation into the IO CONFIGURED state. If some-
thing goes wrong during the parameter setting, the driver
can force the client to start the configuration again by send-
ing message InvalidParameters . Once the conversation is in
the IO CONFIGURED state, the client can either start IO
(by sending StartIO), or reconfigure the driver (ConfigureIO).
If IO is started, the conversation is in state IO RUNNING.
In state IO RUNNING, the client provides the driver with
packet buffers to be used for incoming packets (message
PacketForReceive). The driver may respond with BadPacketSize,
returning the buffer and indicating the size expected. This
way, the client can provide the driver with a number of
buffers for incoming packets. The client can ask for packets
with received data through message GetReceivedPacket and
the driver either returns such a packet via ReceivedPacket or
states that there are no more packets with data (NoPacket).
Similar message sequences are present for transmitting pack-
ets, but we elide them in the example.

From the channel contract it appears that the client polls
the driver to retrieve packets. However, we haven’t ex-
plained the argument of message RegisterForEvents yet. The
argument of type NicEvents.Exp:READY describes an Exp chan-
nel endpoint of contract NicEvents in state READY. This end-
point argument establishes a second channel between the
client and the network driver over which the driver notifies
the client of important events (such as the beginning of a
burst of packet arrivals). The client retrieves packets when
it is ready through the NicDevice channel. Figure 2 shows the
configuration of channels between the client and the network
driver. The NicEvents contract is shown below.

contract NicEvents {
enum NicEventType {

NoEvent, ReceiveEvent, TransmitEvent, LinkEvent
}

out message NicEvent(NicEventType eventType);
in message AckEvent();

state READY: one {
NicEvent! → AckEvent? →READY;

}
}

So far we have seen how channel contracts specify messages
and a finite state machine describing the protocol between
the Imp and Exp endpoints of the channel. The next section
describes how programs use channels.

2.4 Channel Operations

To create a new channel supporting contract C, the following

rep struct Imp {
void SendAckEvent();
void RecvNicEvent(out NicEventType eventType);

}

rep struct Exp {
void SendNicEvent(NicEventType eventType);
void RecvAckEvent();

}

Listing 1: Methods on endpoints

code is used:

C.Imp imp;
C.Exp exp;
C.NewChannel(out imp, out exp);

Two variables imp and exp of the corresponding endpoint
types are declared. These variables are then initialized via
a call to C.NewChannel which creates the new channel and
returns the endpoints by initializing the out parameters.1

Endpoint types contain method definitions for sending
and receiving messages described in the contract. For ex-
ample, the endpoints of the NicEvents contract contain the
method declarations shown in Listing 1. The semantics of
these methods is as follows. Send methods never block and
only fail if the endpoint is in a state in the conversation
where the message cannot be sent. Receive operations check
that the expected message is at the head of the queue and
if so, return the associated data. If the queue is empty, re-
ceives block until a message has arrived. If the message at
the head of the queue is not the expected message or the
channel is closed by the peer, the receive fails.

As is apparent from these declarations, there is no need
to allocate a message object and fill it with the message
data. Only the message arguments are actually transmitted
along with a tag identifying the message. The sender and
receiver only manipulate the message arguments, never an
entire message. This property is desirable, for it avoids the
possibility of failure on sends. Furthermore, as we discuss
in Section 2.6, it simplifies the implementation.

Direct calls to the receive methods are not useful in gen-
eral, since a program has to be ready to receive one of a num-
ber of possible messages. Sing# provides the switch receive

statement for this purpose. Here’s an example of using the
NicDevice channel endpoint in the server:

NicDevice.Exp:IO RUNNING nicClient ...

switch receive {
case nicClient .PacketForReceive(buf ):

// add buf to the available buffers , reply
...

case nicClient .GetReceivedPacket():
// send back a buffer with packet data if available
...

case nicClient .ChannelClosed():
// client closed channel
...

}

1In C# an out parameter is like a C++ by-ref parameter,
but with the guarantee that it will be initialized on all nor-
mal code paths.

180 EuroSys 2006

[M. Fähndrich et al. Language support for fast and reliable 
message-based communication in Singularity OS. Proc. 
EuroSys 2006. DOI 10.1145/1218063.1217953]
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Modelling State Machine Correctness

• If state machine is formally defined in code, we can 
begin to verify it
• Check that the code implements the defined state machine

• Check the state machine itself
• Validate that the driver cannot deadlock

• Validate that certain states can be reached

• …

• [discussed further in the MRS4 course]

• Code can readily be translated into (fragments of) a Promela model, for 
example, suitable for verification with a model checker such as SPIN
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Remote Actors

• Two approaches to identifying message receiver:
• Receiver is anonymous, but bound to named channel

• Receiver is explicitly named as message destination

• Both required a named destination for messages
• Trivial to make this an opaque URL for the application, but meaningful to 

the runtime – can identify remote actors

• Since messages either immutable or linearly typed, data can be safely 
copied across the network

• Most message passing systems allow transparent 
use of remote actors
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System Upgrade and Evolution

• Message passing allows for easy system upgrade
• Rather than passing messages directly to server, pass via proxy

• Proxy can load a new version of the server and redirect 
messages, without disrupting existing clients

• Eventually, all clients are talking to the new server; old server is 
garbage collected

• Allows for gradual transparent system upgrade
• A running system can be upgraded without disrupting service

• Use of dynamic typing can make the upgrade easier
• New components of the system can generate additional 

messages, which are ignored by old components

• Supervisor hierarchy allows system to notice if components fail, 
and fallback to known good version

• Backwards compatible extensions are simple to add in this 
manner
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Error Handling

• The system is massively concurrent – errors in one 
part can be handled elsewhere 

• Error handling philosophy in Erlang:
• Let some other process do the error recovery

• If you can’t do what you want to do, die

• Let it crash

• Do not program defensively

• Be concerned with the overall system reliability, not 
the reliability of any one component
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J. Armstrong, “Making reliable distributed systems in the presence 
of software errors”, PhD thesis, KTH, Stockholm, December 2003, 
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf


Let It Crash

• In a single-process system, that process must be 
responsible for handling errors
• If the single process fails, then the entire application has failed

• In a multi-process system, each individual process 
is less precious – it’s just one of many
• Changes the philosophy of error handling

• A process which encounters a problem should not try to handle that 
problem – instead, fail loudly, cleanly, and quickly “let it crash”

• Let another process cleanup and deal with the problem

• Processes become much simpler, since they’re not cluttered with error 
handling code
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Remote Error Handling

• How to handle errors in a concurrent distributed 
system?
• Isolate the problem, let an unaffected process be responsible 

for recovery

• Don’t trust the faulty component

• Analogy to hardware fault tolerance

• Processes are linked, and the runtime is set to 
trap errors and send a message to the linked 
process on failure
• e.g., process PID2 has requested notification of failure of 

PID1; runtime sends an “EXIT” message on failure, to tell 
PID2 that PID1 failed, and why

• Process PID2 then restarts PID1, and any other dependent 
processes

15

PID1 PID2
{‘EXIT’, PID, Reason}



Supervision Hierarchies

• Organise problems into tree-structured groups 
of processes, letting the higher nodes in the tree 
monitor and correct errors in the lower nodes
• Supervision trees are trees of supervisors – processes that 

monitor other processes in the system

• Supervisors monitor workers – which perform tasks – or 
other supervisors

• Workers are instances of behaviours – processes whose 
operation is characterised by callback functions (i.e., the 
Erlang equivalent of objects)

• E.g., server, event handler, finite state machine, supervisor, application

• Abstract common behaviours into objects

• Workers managed by supervisor processes that 
restart them in the case of failure, or otherwise 
handle errors

16
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Robustness of Erlang Systems

• Example: Ericsson AXD301 ATM switch
• Dimensioned to handle ~50,000 simultaneous flows

with ~120 in setup or teardown phase at any one time

• Processes ATM traffic at 160 gigabits per second
(16 x 10Gbps links) 

• ~1.1 million lines of Erlang
in 2248 Erlang modules

• ~40 programmers
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Software technology

The linear scalability of the AXD 301 system also applies
to functions such as call control and management. As more
switching subracks are added, more processing capacity can
be introduced by adding more processor boards, in a fully
distributed control system.

The software used in AXD 301 is modular, can be scale-
dover many control processors, and is prepared for easy
addition of new service modules. Application software, for
instance programs written in C, C++ or Java, can be inte-
grated with the AXD 301 software modules.

Software can be upgraded while in service, with no or
minimal disruption to traffic handling. Particular care has
been taken to ensure high reliability. In the event of a
processor failure, for instance, the software will automati-
cally reconfigure itself to run on the remaining available
processors. Built-in fine-granularity software error han-
dling, with automatic recovery, limits the impact of any
software errors.

The AXD 301 software is based on Ericsson’s Open
Telecom Platform (OTP). OTP provides a telecom-class
execution environment, including a real-time database,
processor communication mechanisms, and advanced error
detection and recovery functions. It also enables very high
programming productivity and quality, with a design
library containing powerful general system building
blocks, and the high-level telecom programming language,
Erlang.

Element management

AXD 301 has an embedded element management web
server, which allows individual AXD 301 systems to be
managed using a standard web browser. This function can
be accessed by directly connecting a PC to the AXD 301’s
Ethernet port. It can also be accessed remotely by a net-
work management system, communicating with the switch
in-band over the ATM network. 

Network management

Ericsson’s Multiservice Management Suite provides central-
ized management. It manages not only AXD 301, but all
the IP routers, edge switches, concentrators and other

access devices in Ericsson’s multiservice network solution.
The Multiservice Management Suite can easily accommo-
date other vendors’ systems in order to provide a compre-
hensive management platform for a complete network. 

Management of AXD 301 conforms to all relevant
standards recommended by the ATM Forum and the IETF.
Communication between AXD 301 and the management
system uses SNMP (Simple Network Management
Protocol). Large file transfers, for instance, collecting call
detail records or downloading software upgrades, are han-
dled using FTP. All management communication can be
carried within the ATM network.

MANAGEMENT

AXD 301 10 Gbit/s

AXD 301—A new generation ATM switching 
system 
Staffan Blau and Jan Rooth 

The AXD 301 is a new, general-purpose, high-performance ATM switch from 
Ericsson that can be used in several positions in a network. In its initial 
release, the AXD 301 is scaleable from 10 Gbit/s—in one subrack—up to 
160 Gbit/s. The AXD 301 supports every service category defined for ATM, 
including ABR. An advanced buffering mechanism allows services to be 
mixed without compromising quality. 
Designed for non-stop operation, the AXD 301 incorporates duplicate hard-
ware and software modularity, which enables individual modules to be 
upgraded without disturbing traffic. The switching system, which supports 
both ATM Forum and ITU-T signaling, is easily managed using an embedded 
Web-based management system. 
The authors describe the basic 10- and 20-Gbit/s systems as well as the 
160-Gbit/s system. They also touch upon product structure, the control sys-
tem and call handling. 

The AXD 301 is a new asynchronous trans-
fer mode (ATM) switching system from 
Ericsson. Combining features associated 
with data communication, such as com-
pactness and high functionality, with fea-
tures from telecommunications, such as ro-
bustness and scaleability, the AXD 301 is a 
very flexible system that can be used in sev-
eral positions in a network. 

Compactness and scaleability 
The basic AXD 301 module is contained in 
a single subrack and has a switching capac-

Figure 1 
A complete 10-Gbit/s system in one subrack. 

ity of 10 Gbit/s. The subrack can be con-
figured as a full-fledged, stand-alone 
switching system with complete duplica-
tion of all key components. 

Because the single-subrack system is 
actually half a 20-Gbit/s system, two 
10-Gbit/s subracks can be interconnected to 
form a non-blocking 20-Gbit/s system. 

For switching capacities greater than 
20 Gbit/s, a central, fully non-blocking 
160-Gbit/s switch matrix is introduced. Re-
gardless of capacity, all installed equipment 
can be used together with the central ma-
trix. Capacity is extended by adding access 
subracks and switch boards in the central 
switch-matrix subrack. Thus, scaleability is 
achieved in a linear fashion. 

Linear scaleability also applies to func-
tions; for example, to call control and man-
agement. As more switching capacity is 
added, more processors can be introduced, 
thereby increasing processing capacity in 
what becomes a fully distributed control 
system. 

Non-stop operation 
The AXD 301 system is designed for non-
stop operation. Duplicated hardware mini-
mizes the impact of equipment failure on 
traffic. Furthermore, protection-switching 
and equipment-protection options can be 
applied to external interfaces. Hardware can 
be inserted or removed without interrupt-
ing service. The software, which is modu-
lar, has been structured to facilitate the in-
troduction of new functionality without dis-
turbing traffic. 

The system is highly robust, with ad-
vanced functions for capturing software 
faults, isolating hardware faults, and pro-
tecting against overload. 

Functionality 
The AXD 301 supports all standardized 
ATM service categories, including con-
stant bit rate (CBR), variable bit rate 
(VBR), unspecified bit rate (UBR) and 
available bit rate (ABR). The system sup-
ports ITU-T and ATM Forum signaling 
specifications. The signaling prorocols 
allow operators to build a network that 
combines plug-and-play functionality 
with network control and advanced fea-
tures. Signaling protocols include the user 
network interface (UNI 4.0), private net-
work-network interface (PNNI 1.0) and 
the broadband ISUP (B-ISUP). 

The internal structure of the AXD 301 
facilitates extensions and upgrades, and 

10 Ericsson Review No. 1. 1998 
Images from: S. Blau, J. Rooth, J. Axell, F. Hellstrand, M. Buhrgard, T. Westin, and G. 

Wicklund, “AXD 301: A new generation ATM switching system”, Ericsson Review, 1998.



Robustness of Erlang Systems

• Example: Ericsson AXD301 ATM switch
• 99.9999999% reliable in real-world deployment on 11 routers at a major 

Ericsson customer (~0.5 seconds downtime per year)

• Yet, failures do occur, and are handled by the supervision hierarchy and 
distributed error recovery

• Employs restart-and-recover semantics per-connection

• Failures may disrupts one connection out of tens-of-thousands – assumes 
failures are transient; system doesn’t employ multi-version programming
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Discussion

• The let-it-crash philosophy changes error handling, 
moving it out-of-process

• There are a few compelling case studies to show it 
can work well in some domains

• Is this a generally appropriate error-handling tool?
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