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Lecture Outline

• Concurrency, threads, and locks

• Limitations of lock-based concurrency
• Memory models

• Composition and correctness

• Message passing systems
• Approaches and principles

• Erlang

• Scala+Akka

2



Concurrency, Threads, and Locks

• Operating systems expose concurrency via 
processes and threads
• Processes are isolated with separate memory areas

• Threads share access to a common pool of memory

• The processor/language memory models 
specify how concurrent access to shared 
memory works
• Generally enforce synchronisation via explicit locks 

around critical sections (e.g. Java synchronized 
methods and statements; pthread mutexes)

• Very limited guarantees about unlocked concurrent 
access to shared memory
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Limitations of Lock-based Concurrency

• Major problems with lock-based concurrency:
• Difficult to define a memory model that enables good performance, while 

allowing programmers to reason about the code

• Difficult to ensure correctness when composing code
• Difficult to enforce correct locking

• Difficult to guarantee freedom from deadlocks

• Failures are silent – errors tend to manifest only under heavy load

• Balancing performance and correctness difficult – easy to over- or under-
lock systems
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Multicore Memory Models

• Memory typically shared between cores
• May be symmetric or NUMA; potentially multiple layers of caching

• When do writes made by one core become visible 
to other cores?
• Prohibitively expensive for all threads on all core to have the exact same 

view of memory (“sequential consistency”)

• For performance, allow cores inconsistent views of memory, except at 
synchronisation points; introduce synchronisation primitives with well-
defined semantics

• Varies between processor architectures – differences generally hidden by 
language runtime, provided language has a clear memory model
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Multicore Memory Models

• Memory Model defines space in which language 
runtime and processor architecture can innovate, 
without breaking programs
• Synchronisation between threads occurs only at well-defined instants; 

memory may appear inconsistent between these times, if that helps the 
processor and/or runtime system performance

• Without well-defined memory model, cannot reason about lock-based 
code

• Essential for portable code using locks and shared memory
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Example: Java Memory Model

• Java has a formally defined memory model

• Between threads:
• Changes to a field made by one thread are visible to other threads if:

• The writing thread has released a synchronisation lock, and that same lock has subsequently 
been acquired by the reading thread (writes with lock held are atomic to other locked code)

• If a thread writes to a field declared volatile, that write is done atomically, and immediately 
becomes visible to other threads

• A newly created thread sees the state of the system as if it had just acquired a synchronisation 
lock that had just been released by the creating thread

• When a thread terminates, its writes complete and become visible to other threads

• Access to fields is atomic
• i.e., you can never observe a half-way completed write, even if incorrectly synchronised

• Except for long and double fields, for which writes are only atomic if the field is volatile, 
or if a synchronisation lock is held

• Within a thread: actions are seen in program order
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[Somewhat simplified: see Java Language Specification, Chapter 
17, for details http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf]

http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf


Multicore Memory Models

• Java is unusual in having such a clearly-specified 
memory model
• Other languages are less well specified, running the risk that new 

processor designs can subtly break previously working programs

• C and C++, in particular, have very poorly specified memory models
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Composition of Lock-based Code

• Correctness of small-scale code using locks can be ensured by careful coding  
(at least in theory)

• A more fundamental issue: lock-based code does not compose to larger scale
• Assume a correctly locked bank account class, with

methods to credit and debit money from an account

• Want to take money from a1 and move it to a2, 
without exposing an intermediate state where 
the money is in neither account

• Can’t be done without locking all other access 
to a1 and a2 while the transfer is in progress

• The individual operations are correct, but the combined operation is not

• This is lack of abstraction a limitation of the lock-based concurrency model, 
and cannot be fixed by careful coding

• Locking requirements form part of the API of an object
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Alternative Concurrency Models

• Concurrency increasingly important
• Multicore systems now ubiquitous

• Asynchronous interactions between software and hardware devices

• Threads and synchronisation primitives problematic

• Are there alternatives that avoid these issues?
• Message passing systems and actor-based languages

• Transactional memory coupled with functional languages (e.g., Haskell) 
for automatic rollback and retry of transactions
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Message Passing Systems

• System is structured as a set of communicating 
processes, with no shared mutable state

• All communication via exchange of messages
• Messages are generally required to be immutable – data 

conceptually copied between processes

• Some systems use linear types to ensure messages are 
not referenced after they are sent, allowing mutable data 
to be safely transferred 

• Implementation
• Implementation within a single system usually built with 

shared memory and locks, passing a reference to the 
message – rely on correct locking of message passing 
implementation

• Trivial to distribute, by sending the message down a 
network channel – the runtime needs to know about the 
network, but the application can be unaware that the 
system is distributed
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Interaction Models

• Message passing can involve rendezvous between 
sender and receiver
• A synchronous message passing model – sender waits for receiver

• Alternatively, communication may be asynchronous
• The sender continues immediately after sending a message

• Message is buffered, for later delivery to the receiver

• Synchronous rendezvous can be simulated by waiting for a reply
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Communication and the Type System

• Statically-typed communication
• Explicitly define the types of message that can be transferred

• Compiler checks that receiver can handle all messages it can receive – 
robustness, since a receiver is guaranteed to understand all messages

• Dynamically-typed communication
• Communication medium conveys any time of message; receiver uses 

pattern matching on the received message types to determine if it can 
respond to the messages

• Potentially leads to run-time errors if a receiver gets a message that it 
doesn’t understand
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Naming of Communications

• Are messages sent between named processes or 
indirectly via channels?
• Some systems directly send messages to actors (processes), each of 

which has its own mailbox

• Others use explicit channels, with messages being sent indirectly via the 
channel

• Explicit channels require more plumbing, but the extra level of indirection 
between sender and receiver may be useful for evolving systems

• Explicit channels are a natural place to define a communications protocol 
for statically typed messages
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Message Passing Systems

• Message passing starting to see wide deployment
• Erlang (http://www.erlang.org/) 

• Scala (http://www.scala-lang.org/) + Akka (http://akka.io/)

• Both adopt a similar message passing model:
• Asynchronous – messages are buffered at receiver; sender does not wait

• Dynamically typed – any type of message may be sent to any receiver

• Messages sent directly to named actors, not via channels

• Both provide transparent distribution of processes in a networked system

• Other systems make different design choices
• Singularity (discussed in Tutorial 3) and the Rust programming language 

(http://rust-lang.org/) use asynchronous statically typed messages passed 
via explicit channels
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Example: Scala+Akka
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import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor {
  def receive = {
    case "hello" => println("hello back at you")
    case _       => println("huh?")
  }
}

object Main extends App {
  // Initialise actor runtime
  val runtime = ActorSystem("HelloSystem")

  // Create an actor, running concurrently
  val helloActor = runtime.actorOf(Props[HelloActor], name = "helloactor")

  // Send it some messages
  helloActor ! "hello"
  helloActor ! "buenos dias"
}

The actor comprises a receive loop that reacts 
to messages as they’re received

Complete program is a collection of actors that 
exchange messages



Advantages and Disadvantages

• Model adopted by Erlang and Scala+Akka gives 
weakly coupled processes that communicate via 
asynchronous and dynamically typed messages:
• Expressive, flexible, and extensible actor model

• Robust framework for error handling via separate processes

• Relative ease of upgrading running systems via dynamic actor insertion

• Disadvantage: checking happens at run time, so 
guarantees of robustness are probabilistic
• Statically typed message passing provides compile-time checking that a 

process can respond to messages

• Rendezvous-based synchronous systems provide better tests for liveness
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Further Reading

• J. Armstrong, “Erlang”, Communications of the ACM, 
53(9), September 2010, DOI:10.1145/1810891.1810910

• Does the programming model make sense?

• Does the reliability model (“let it crash”) make sense? 
Will discuss further in next lecture
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ERLANG IS  A  concurrent programming language 
designed for programming fault-tolerant distributed 
systems at Ericsson and has been (since 2000) freely 
available subject to an open-source license. More 
recently, we’ve seen renewed interest in Erlang, as 
the Erlang way of programming maps naturally to 
multicore computers. In it the notion of a process is 
fundamental, with processes created and managed 
by the Erlang runtime system, not by the underlying 
operating system. The individual processes, which are 
programmed in a simple dynamically typed functional 
programming language, do not share memory and 
exchange data through message passing, simplifying 
the programming of multicore computers. 

Erlang2 is used for programming fault-tolerant, 
distributed, real-time applications. What differentiates 
it from most other languages is that it’s a concurrent 
programming language; concurrency belongs to  
the language, not to the operating system. Its 
programs are collections of parallel processes 
cooperating to solve a particular problem that can  
be created quickly and have only limited memory 

overhead; programmers can create 
large numbers of Erlang processes yet 
ignore any preconceived ideas they 
might have about limiting the number 
of processes in their solutions. 

All Erlang processes are isolated 
from one another and in principle 
are “thread safe.” When Erlang ap-
plications are deployed on multicore 
computers, the individual Erlang pro-
cesses are spread over the cores, and 
programmers do not have to worry 
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between 
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed 
as extremely object-oriented though 
without the usual mechanisms associ-
ated with traditional OO languages. 

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even 
within a process, data is immutable. 
The sequential Erlang subset that ex-
ecutes within an individual process is a 
dynamically typed functional program-
ming language with immutable state.b 
Moreover, instead of classes, methods, 
and inheritance, Erlang has modules 
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling, 
code-replacement mechanisms, and a 
large set of libraries. 

Here, I outline the key design crite-
ria behind the language, showing how 
they are reflected in the language itself, 
as well as in programming language 
technology used since 1985. 

Shared Nothing 
The Erlang story began in mid-1985 
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate 
shared memory; the primitives are intended 
for writing special system processes and not 
normally exposed to the programmer.

b This is not strictly true; processes can mutate 
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

DOI:10.1145/1810891.1810910

The same component isolation that made 
it effective for large distributed telecom 
systems makes it effective for multicore  
CPUs and networked applications. 
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