
Message Passing (1)

Advanced Operating Systems
Lecture 11

Lecture Outline

• Concurrency, threads, and locks

• Limitations of lock-based concurrency
• Memory models

• Composition and correctness

• Message passing systems
• Approaches and principles

• Erlang

• Scala+Akka

2

Concurrency, Threads, and Locks

• Operating systems expose concurrency via
processes and threads
• Processes are isolated with separate memory areas

• Threads share access to a common pool of memory

• The processor/language memory models
specify how concurrent access to shared
memory works
• Generally enforce synchronisation via explicit locks

around critical sections (e.g. Java synchronized
methods and statements; pthread mutexes)

• Very limited guarantees about unlocked concurrent
access to shared memory

3

Ti
m

e

Thread A Thread B

Critical Section Blocked

Critical Section

Limitations of Lock-based Concurrency

• Major problems with lock-based concurrency:
• Difficult to define a memory model that enables good performance, while

allowing programmers to reason about the code

• Difficult to ensure correctness when composing code
• Difficult to enforce correct locking

• Difficult to guarantee freedom from deadlocks

• Failures are silent – errors tend to manifest only under heavy load

• Balancing performance and correctness difficult – easy to over- or under-
lock systems

4

Multicore Memory Models

• Memory typically shared between cores
• May be symmetric or NUMA; potentially multiple layers of caching

• When do writes made by one core become visible
to other cores?
• Prohibitively expensive for all threads on all core to have the exact same

view of memory (“sequential consistency”)

• For performance, allow cores inconsistent views of memory, except at
synchronisation points; introduce synchronisation primitives with well-
defined semantics

• Varies between processor architectures – differences generally hidden by
language runtime, provided language has a clear memory model

5

Multicore Memory Models

• Memory Model defines space in which language
runtime and processor architecture can innovate,
without breaking programs
• Synchronisation between threads occurs only at well-defined instants;

memory may appear inconsistent between these times, if that helps the
processor and/or runtime system performance

• Without well-defined memory model, cannot reason about lock-based
code

• Essential for portable code using locks and shared memory

6

Example: Java Memory Model

• Java has a formally defined memory model

• Between threads:
• Changes to a field made by one thread are visible to other threads if:

• The writing thread has released a synchronisation lock, and that same lock has subsequently
been acquired by the reading thread (writes with lock held are atomic to other locked code)

• If a thread writes to a field declared volatile, that write is done atomically, and immediately
becomes visible to other threads

• A newly created thread sees the state of the system as if it had just acquired a synchronisation
lock that had just been released by the creating thread

• When a thread terminates, its writes complete and become visible to other threads

• Access to fields is atomic
• i.e., you can never observe a half-way completed write, even if incorrectly synchronised

• Except for long and double fields, for which writes are only atomic if the field is volatile,
or if a synchronisation lock is held

• Within a thread: actions are seen in program order

7

[Somewhat simplified: see Java Language Specification, Chapter
17, for details http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf]

http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

Multicore Memory Models

• Java is unusual in having such a clearly-specified
memory model
• Other languages are less well specified, running the risk that new

processor designs can subtly break previously working programs

• C and C++, in particular, have very poorly specified memory models

8

Composition of Lock-based Code

• Correctness of small-scale code using locks can be ensured by careful coding
(at least in theory)

• A more fundamental issue: lock-based code does not compose to larger scale
• Assume a correctly locked bank account class, with

methods to credit and debit money from an account

• Want to take money from a1 and move it to a2,
without exposing an intermediate state where
the money is in neither account

• Can’t be done without locking all other access
to a1 and a2 while the transfer is in progress

• The individual operations are correct, but the combined operation is not

• This is lack of abstraction a limitation of the lock-based concurrency model,
and cannot be fixed by careful coding

• Locking requirements form part of the API of an object

9

a1.debit(v)
a2.credit(v)

Preemption exposes
intermediate state

Alternative Concurrency Models

• Concurrency increasingly important
• Multicore systems now ubiquitous

• Asynchronous interactions between software and hardware devices

• Threads and synchronisation primitives problematic

• Are there alternatives that avoid these issues?
• Message passing systems and actor-based languages

• Transactional memory coupled with functional languages (e.g., Haskell)
for automatic rollback and retry of transactions

10

Message Passing Systems

• System is structured as a set of communicating
processes, with no shared mutable state

• All communication via exchange of messages
• Messages are generally required to be immutable – data

conceptually copied between processes

• Some systems use linear types to ensure messages are
not referenced after they are sent, allowing mutable data
to be safely transferred

• Implementation
• Implementation within a single system usually built with

shared memory and locks, passing a reference to the
message – rely on correct locking of message passing
implementation

• Trivial to distribute, by sending the message down a
network channel – the runtime needs to know about the
network, but the application can be unaware that the
system is distributed

11

Interaction Models

• Message passing can involve rendezvous between
sender and receiver
• A synchronous message passing model – sender waits for receiver

• Alternatively, communication may be asynchronous
• The sender continues immediately after sending a message

• Message is buffered, for later delivery to the receiver

• Synchronous rendezvous can be simulated by waiting for a reply

12

Communication and the Type System

• Statically-typed communication
• Explicitly define the types of message that can be transferred

• Compiler checks that receiver can handle all messages it can receive –
robustness, since a receiver is guaranteed to understand all messages

• Dynamically-typed communication
• Communication medium conveys any time of message; receiver uses

pattern matching on the received message types to determine if it can
respond to the messages

• Potentially leads to run-time errors if a receiver gets a message that it
doesn’t understand

13

Naming of Communications

• Are messages sent between named processes or
indirectly via channels?
• Some systems directly send messages to actors (processes), each of

which has its own mailbox

• Others use explicit channels, with messages being sent indirectly via the
channel

• Explicit channels require more plumbing, but the extra level of indirection
between sender and receiver may be useful for evolving systems

• Explicit channels are a natural place to define a communications protocol
for statically typed messages

14

Message Passing Systems

• Message passing starting to see wide deployment
• Erlang (http://www.erlang.org/)

• Scala (http://www.scala-lang.org/) + Akka (http://akka.io/)

• Both adopt a similar message passing model:
• Asynchronous – messages are buffered at receiver; sender does not wait

• Dynamically typed – any type of message may be sent to any receiver

• Messages sent directly to named actors, not via channels

• Both provide transparent distribution of processes in a networked system

• Other systems make different design choices
• Singularity (discussed in Tutorial 3) and the Rust programming language

(http://rust-lang.org/) use asynchronous statically typed messages passed
via explicit channels

15

http://www.erlang.org/
http://www.erlang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://akka.io
http://akka.io
http://rust-lang.org
http://rust-lang.org

Example: Scala+Akka

16

import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor {
 def receive = {
 case "hello" => println("hello back at you")
 case _ => println("huh?")
 }
}

object Main extends App {
 // Initialise actor runtime
 val runtime = ActorSystem("HelloSystem")

 // Create an actor, running concurrently
 val helloActor = runtime.actorOf(Props[HelloActor], name = "helloactor")

 // Send it some messages
 helloActor ! "hello"
 helloActor ! "buenos dias"
}

The actor comprises a receive loop that reacts
to messages as they’re received

Complete program is a collection of actors that
exchange messages

Advantages and Disadvantages

• Model adopted by Erlang and Scala+Akka gives
weakly coupled processes that communicate via
asynchronous and dynamically typed messages:
• Expressive, flexible, and extensible actor model

• Robust framework for error handling via separate processes

• Relative ease of upgrading running systems via dynamic actor insertion

• Disadvantage: checking happens at run time, so
guarantees of robustness are probabilistic
• Statically typed message passing provides compile-time checking that a

process can respond to messages

• Rendezvous-based synchronous systems provide better tests for liveness

17

Further Reading

• J. Armstrong, “Erlang”, Communications of the ACM,
53(9), September 2010, DOI:10.1145/1810891.1810910

• Does the programming model make sense?

• Does the reliability model (“let it crash”) make sense?
Will discuss further in next lecture

18

68 COMMUNICATIONS OF THE ACM | SEPTEMBER 2010 | VOL. 53 | NO. 9

contributed articles

ERLANG IS A concurrent programming language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we’ve seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to
multicore computers. In it the notion of a process is
fundamental, with processes created and managed
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are
programmed in a simple dynamically typed functional
programming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers.

Erlang2 is used for programming fault-tolerant,
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent
programming language; concurrency belongs to
the language, not to the operating system. Its
programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

overhead; programmers can create
large numbers of Erlang processes yet
ignore any preconceived ideas they
might have about limiting the number
of processes in their solutions.

All Erlang processes are isolated
from one another and in principle
are “thread safe.” When Erlang ap-
plications are deployed on multicore
computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed
as extremely object-oriented though
without the usual mechanisms associ-
ated with traditional OO languages.

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even
within a process, data is immutable.
The sequential Erlang subset that ex-
ecutes within an individual process is a
dynamically typed functional program-
ming language with immutable state.b
Moreover, instead of classes, methods,
and inheritance, Erlang has modules
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling,
code-replacement mechanisms, and a
large set of libraries.

Here, I outline the key design crite-
ria behind the language, showing how
they are reflected in the language itself,
as well as in programming language
technology used since 1985.

Shared Nothing
The Erlang story began in mid-1985
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate
shared memory; the primitives are intended
for writing special system processes and not
normally exposed to the programmer.

b This is not strictly true; processes can mutate
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

DOI:10.1145/1810891.1810910

The same component isolation that made
it effective for large distributed telecom
systems makes it effective for multicore
CPUs and networked applications.

BY JOE ARMSTRONG

http://dx.doi.org/10.1145/1810891.1810910
http://dx.doi.org/10.1145/1810891.1810910

