
Garbage Collection (1)

Advanced Operating Systems
Lecture 8

Lecture Outline

• Introduction

• Reference counting

• Garbage collection
• Mark-sweep

• Mark-compact

• Copying collectors

• …

2

Introduction

• Wide distrust of automatic memory management in
real-time, embedded, and systems programming
• Perception of high processor and memory overheads, unpredictable poor

timing behaviour

• But, memory management problems are common in code with manual
memory management!

• Memory leaks and unpredictable memory allocation performance (calls to malloc() can vary
in execution time by several orders of magnitude)

• Memory corruption and buffer overflows

• Performance of automatic memory management is
much better than in the past
• Not all problems solved, but there are garbage collectors with predictable

timing, suitable for real-time applications

• Moore’s law makes the overheads more acceptable

3

Automatic Memory Management

• Memory/object allocation and deallocation may be
manual or automatic
• Automatic allocation/deallocation of variables on the stack is common

• In the example code, memory for di is
automatically allocated when the function
executes, and freed when it completes

• Extremely simple and efficient memory
management for languages like C/C++
that have complex value types

• Useless for Java-like languages, where
objects are allocated on the heap

• Memory allocated on the heap is allocated explicitly (e.g., using malloc)

• Heap memory may be explicitly freed, or automatically reclaimed when no
longer referenced

• Automatic reclamation doesn’t remove the need to manage object life-cycles, and doesn’t
prevent memory leaks

4

int saveDataForKey(char *key, FILE *outf)
{
 struct DataItem di;

 if (findData(&di, key)) {
 saveData(&di, outf);
 return 1;
 }
 return 0;
}

Automatic Heap Management

• Aim is to find objects that are no longer used, and
make their space available for reuse
• An object is no longer used (ready for reclamation) if it is not reachable by

the running program via any path of pointer traversals

• Any object that is potentially reachable is preserved – is better to waste
memory if unsure about reachability, than to deallocate an object that is
used, leading to a dangling pointer and later program crash

5

Reference Counting

• Simple automatic heap management scheme
• Each object is augmented with a count of the number of

references to that object

• Incremented each time a reference to the object is
created; decremented when a reference is destroyed

• When the count reaches zero, there are no references
to the object, and it may be reclaimed

• Reclaiming an object may remove references to other
objects, causing their count to become zero, triggering
further reclamation

• Incremental operation: collection occurs in
many small bursts

• Cycles are problematic and must be explicitly
broken by the programmer

• Per-object overhead to store reference count
is inefficient if many small objects are used

• Short-lived objects: high processor overhead,
due to cost of managing reference counts

6

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

HEAP SPACE

~ . - - t . . ~

, 1 ' 1 I r a . ~ /

ROOT
SET ! !

' 1 , 1

, 2

Fig. 2. Reference counting with unreclaimable cycle.

which combine advantages of simpler data structures, and the like.
Systems using reference counting garbage collectors therefore usually include

some other kind of garbage collector as well, so that if too much uncollectable cyclic
garbage accumulates, the other method can be used to reclaim it.

Many programmers who use reference-counting systems (such as Interlisp and
early versions of Smalltalk) have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before they become a nuisance. This
has a negative impact on program structure, and many programs still have storage
"leaks" that accumulate cyclic garbage which must be reclaimed by some other
means. 5 These leaks, in turn, can compromise the real-time nature of the algorithm,

5 [Bob80] describes modifications to reference counting to allow it to handle some spe-
cial cases of cyclic structures, but this restricts the programmer to certain stereotyped

Widely used by scripting languages (e.g., Perl and
Python), and in the MacOS X Objective-C runtime

Garbage Collection

• Avoid problems of reference counting via tracing
algorithms
• Explicitly trace through the allocated objects, recording which are in use,

rather than continually maintaining reference counts; dispose of unused
objects

• This moves garbage collection to be a separate phase of the program’s
execution, rather than an integrated part of an objects lifecycle

• A garbage collector runs and disposes of objects

• An object is reclaimed when its reference count becomes zero

• Many tracing garbage collection algorithms exist:
• Mark-sweep, mark-compact, copying

• Generational algorithms

7

Mark-Sweep Collectors

• Simplest automatic garbage collection scheme

• Two phase algorithm
• Distinguish live objects from garbage (mark)

• Reclaim the garbage (sweep)

• Non-incremental algorithm: program is paused to
perform collection when memory becomes tight

• Will collect all garbage, whether or not there are
cycles

8

Distinguishing Live Objects

• Find the root set of objects
• Global and stack variables

• Traverse the object relationship graph staring at the
root set to find all other reachable, live, objects
• Breadth-first or depth-first search

• Must read every pointer in every object in the system to systematically
find all reachable objects

• Mark reachable objects
• Stop traversal at previously seen objects to avoid following cycles

• Either set a bit in the object header, or in some separate table of live
objects

9

Reclaiming the Garbage

• Sweep through the entire heap, examining every
object for liveness in turn
• If marked as alive, keep it, otherwise reclaim the object’s space

• Space occupied by reclaimed objects is marked as free: the system must
maintain one or more free lists to track available space

• New objects are allocated in the space previously reclaimed

• No problem with collecting cycles, since the mark
phase will not reach unreferenced cycles

10

Problems with Mark-Sweep Collectors

• Cost proportional to size of heap
• Program is stopped with the collector runs; unpredictable collection time

• All live objects must be marked, and all garbage must be reclaimed

• Unlike reference counting, mark-sweep garbage collection is slower if the
program has lots of memory allocated

• Fragmentation
• Since objects are not moved, space may become fragmented, making it

difficult to allocate large objects (even though space available overall)

• Locality of reference
• Passing through the entire heap in unpredictable order disrupts operation

of cache and virtual memory subsystem

• Objects located where they fit (due to fragmentation), rather than where it
makes sense from a locality of reference viewpoint

11

Mark-Compact Collectors

• Traverse the object graph, and
mark live objects

• Reclaim unreachable objects, then
compact the live objects, moving
them to leave a single contiguous
free space
• Reclaiming and compacting memory can

be done in a single pass, but still touches
the entire address space

• Advantages:
• Solves fragmentation problems

• Allocation is very quick (increment pointer
to next free space, return previous value)

• Disadvantages:
• Collection is slow, due to moving objects in

memory, and time taken is unpredictable

• Collection has poor locality of reference

12

Mark Reclaim Compact

Copying Collectors

• Copying collectors integrate the traversal (marking)
and copying phases into one pass
• All the live data is copied into one region of memory

• All the remaining memory contains garbage, or has not yet been used

• Similar to mark-compact, but more efficient

• Time taken to collect is proportional to the number
of live objects

13

• Standard approach: a semispace collector,
that uses the Cheney algorithm for copying
traversal

• Divide the heap into two halves, each one a
contiguous block of memory

• Allocations made linearly from one half of
the heap only
• Memory is allocated contiguously, so allocation is fast

(as in the mark-compact collector)

• No problems with fragmentation due to allocating data
of different sizes

• When an allocation is requested that won’t fit
into the active half of the heap, a collection is
triggered

Stop-and-copy Using Semispaces (1)

14

13

ROOT
t ' s ~ e w s

FROMSPACE TOSPACE

Fig. 3. A simple semispace garbage collector before garbage collection.

descendants. This means that there are no more reachable objects to be copied, and
the scavenging process is finished.

Actually, a slightly more complex process is needed, so that objects that are
reached by multiple paths are not copied to tospace multiple times. When an object
is transported to tospace, a forwarding pointer is installed in the old version of the
object. The forwarding pointer signifies that the old object is obsolete and indicates
where to find the new copy of the object. When the scanning process finds a pointer
into fromspace, the object it refers to is checked for a forwarding pointer. If it has
one, it has already been moved to tospace, so the pointer it has been reached by is
simply updated to point to its new location. This ensures that each live object is
transported exactly once, and that all pointers to the object are updated to refer to
the new copy.

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

Stop-and-copy Using Semispaces (2)

• Collection stops execution of the program

• A pass is made through the active space,
and all live objects are copied to the other
half of the heap
• The Cheney algorithm is commonly used to make the

copy in a single pass

• Anything not copied is unreachable, and is simply
ignored (and will eventually be overwritten by a later
allocation phase)

• The program is then restarted, using the
other half of the heap as the active allocation
region

• The role of the two parts of the heap (the two
semispaces) reverses each time a collection
is triggered

15

ROOT
SET

iii
0

FROMSPACE

14

TOSPACE

Fig. 4. Semispace collector after garbage collection.

Efficiency of Copying Collect ion. A copying garbage collector can be made ar-
bitrarily efficient if sufficient memory is available [Lar77, App87]. The work done at
each collection is proportional to the amount of live data at the time of garbage col-
lection. Assuming that approximately the same amount of data is live at any given
time during the program's execution, decreasing the frequency of garbage collections
will decrease the total amount of garbage collection effort.

A simple way to decrease the frequency of garbage collections is to increase the
amount of memory in the heap. If each semispace is bigger, the program will run
longer before filling it. Another way of looking at this is that by decreasing the
frequency of garbage collections, we are increasing the average age of objects at
garbage collection time. Objects that become garbage before a garbage collection
needn't be copied, so the chance that an object will n e v e r have to be copied is

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

Breadth-first Copying: Cheney Algorithm

• The root set of objects is identified, and
forms the initial queue of live objects to be
copied

• Objects in the queue are examined in turn:
• Each unprocessed object directly referenced by the

object in the queue is itself added to the end of the
queue

• The object in the queue is copied to the other space,
and the original is marked as having been processed
(pointers are updated as the copy is made)

• Once the end of the queue is reached, all
live objects have been copied

16

15

ROOT A t

B

E

I I I

F
iI

t
I I

I i

i~ I!!!!ii!!!!!lli!!!!l J!!l
~ n B ~
Scan Free

Scan Free

Scan Free

a B~ c D ~
Scan Free

v)

Scan Free

Fig. 5. The Cheney algorithm of breadth-first copying.
Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

Object
graph

Copying
queue

Efficiency of Copying Collectors

• Time taken for collection depends on the amount of
data copied, which depends on the number of live
objects

• Collection only happens when the semispace is full

• If most objects die young, then can reduce the data
to be copied by increasing the size of the heap
• Increasing the size of the heap increases the age to which objects need

to live in order to be copied; most don’t live that long, and so aren’t copied

• Trade-off memory for collection time: more memory used, less fraction of
time spent copying data

17

Concluding Remarks

• These approaches have broadly similar costs
• But they move where the cost is paid: on allocation or collection; in terms

of memory or processing time

• Considering efficiency of copying collectors, and object lifetimes, leads to
a possible optimisation: generational collectors (next lecture)

• Mark-sweep and reference counting don’t move
data, and so can work with weakly-typed data
• In languages like C and C++, with casting and pointer arithmetic, it’s hard

to identify all possible pointers, but can usually identify values that might
be pointers and be conservative in what’s collected

• But – can’t move an object, if you can’t be sure all pointers to it have been
updated

18

Further Reading

• P. R. Wilson, “Uniprocessor garbage collection
techniques”, In Proc. IWMM’92, St. Malo, France,
DOI 10.1007/BFb0017182

19

Uniprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA

(wilson@cs.ut exas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmill
collection. Incremental techniques can kccp garbage concction pause times
short, by interleaving small amounts of collection work with program execu-
tion. Generationalschemes improve efficiency and locality by garbage collect-
ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

1 A u t o m a t i c S t o r a g e R e c l a m a t i o n

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a '~free" or "dispose" statement, garbage
collected systems free the programmer from this burden. The garbage collector's
function is to find data objects I that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a "dangling pointer" into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 M o t i v a t i o n

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when olher
modules are not interested in a particular object.

1 We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

