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Lecture Outline

• Ensuring predictable timing

• Embedded systems
• Constraints

• Interacting with hardware

• Device drivers

• Correctness and system longevity

• Low-level programming environments
• Current and alternative approaches
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Ensuring Predictable Timing

• Scheduling theory gives proof of correctness – if 
timing of system well understood

• Numerous sources of unpredictability
• Timing variation due to dependence on algorithm input values → measure

• Blocking due to resource access

• Preemption by higher priority tasks or interrupt handlers

• Processor cache improves average timing, with poor worst-case bounds

• Virtual memory – address translation, paging, memory protection

• Memory allocation and management – malloc() or garbage collector

• Avoid by defensive programming
• Disable or avoid features that cause timing variation

• Optimise for predictability, not raw performance
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Embedded Systems

• Constraints on embedded systems: 
• Must interact with hardware to manipulate their environment – custom 

device drivers and low-level hardware access in application code

• Safety critical or simply hard to upgrade – strong correctness constraints

• Often resource constrained, with a low-level programming model

• Issues differ from those inherent in traditional 
desktop application programming
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Interacting with Hardware

• Devices represented by bit fields at known address
• Bit-level manipulation needed to access fields in control register

• Code needs memory address and size of control register, layout, 
endianness, and meaning of bit fields within the register

• C allows definition of bit fields and explicit access to 
particular memory addresses via pointers – needed 
for implementation of device drivers

• Illusion of portability – standard C does not specify:
• Size of basic types (e.g., a char is not required to be 8 bits, an 

int is not required to be 32 bits, etc.)

• Bit and byte ordering

• Alignment or atomicity of memory access

• Each compiler/operating system defines these for its environment; 
the <stdint.h> and <limits.h> headers provide definitions to 
help with portability, but with weak type checking

• Device drivers written in C a frequent source of bugs

• Other languages (e.g., Ada) provide strict definitions 
and allow for stronger type checking
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struct {
    short errors     : 4;
    short busy       : 1;
    short unit_sel   : 3
    short done       : 1;
    short irq_enable : 1
    short reserved   : 3
    short dev_func   : 2;
    short dev_enable : 1;
} ctrl_reg;

int enable_irq(void)
{
    ctrl_reg *r = 0x80000024;
    ctrl_reg  tmp;

    tmp = *r;
    if (tmp.busy == 0) {
        tmp.irq_enable = 1;
        *r = tmp;
        return 1;
    }
    return 0;
}

Example: hardware access in C



Sources of Bugs in Device Drivers (1)
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Name Description Total faults
Device prot.
violations

S/W protocol
violations

Concurrency
faults

Generic faults

USB drivers
rtl8150 rtl8150 USB-to-Ethernet adapter 16 3 2 7 4
catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4
usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11
usb serial USB-to-serial converter 50 2 17 13 18
usb storage USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6

PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
i810 fb i810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 1. Classified counts of driver faults. The maxima in each row are in bold face. The highlighted cells summarise the
types of faults that we focus on in the rest of the paper.
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Figure 2. Summary of software faults by driver type.

Type of faults #

Race or deadlock in configuration functions 29
Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions 5
Using uninitialised synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock 1

Table 3. Types of concurrency faults.

3. Dingo device driver architecture
Our driver defect study has revealed areas where better OS
support could improve driver reliability. In particular two
categories of faults are directly related to how the driver in-
teracts with the OS: concurrency faults and software proto-
col violations. Together, these faults constitute 39% of the
defects in our study, and are clearly a significant source of
problems for drivers.

To address these issues, we developed Dingo, a new ar-
chitecture for device drivers that simplifies interaction with
the OS and allows driver developers to focus on the main
task of a driver: controlling the hardware. Dingo achieves
this via two improvements over traditional driver architec-
tures. First, Dingo reduces the amount of concurrency that
the driver must handle by replacing the driver’s traditional
multithreaded model of computation with an event-driven
model. This model eliminates the majority of concurrency-
related driver faults without impacting the performance. Sec-
ond, Dingo provides a formal language for describing driver
software protocols, which avoids confusion and ambiguity,
and helps driver writers implement correct protocols.

Dingo does not attempt to provide solutions to deal with
the other types of defects identified (i.e., device protocol
violations and generic programming faults) since these are
provoked by factors that lie beyond the influence of the OS
and should be eliminated by complementary means such as
those surveyed in Section 10.
Overview of Dingo Dingo specifies a model for commu-
nication between a driver and its environment. Communi-
cation occurs over ports, which are bidirectional message-
based communication points. In a typical implementation,
ports are represented by function tables and messages are
delivered by invoking the corresponding functions. Dingo
guarantees atomic message delivery resulting in a strict or-
dering of all messages exchanged by drivers.

Each port is associated with a protocol, which specifies a
behavioural contract between the driver and the framework.
It defines the messages that can be exchanged over that port
as well as constraints on the ordering, timing and content of
those messages. Every port has exactly one protocol asso-
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Summary cause of bugs found in Linux USB, Firewire (IEEE 1394), and PCI drivers from 2002–2008 
[from L. Ryzhyk et al., “Dingo: Taming device drivers”, Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Device protocol violations are mis-programming of the hardware, software protocol violations and 
concurrency faults are invalid interactions with the rest of the Linux kernel 

Can we address these through improvements to 
the supporting infrastructure for device-drivers?

Fix through device documentation and better 
language support for low-level programming?



Sources of Bugs in Device Drivers (2)
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• What causes software protocol violations and 
concurrency faults?
• Misunderstanding or misuse of the kernel device driver 

API functions, especially in uncommon code paths (e.g., 
error handling, hot-plug, power management)

• Incorrect use of locks leading to race conditions and 
deadlocks

• Bad programming and poor documentation of 
kernel APIs and locking requirements? 

• Or error-prone programming languages, 
concurrency models, and badly designed 
kernel APIs?

We then built a bug database for these drivers by analysing
all changes made to the drivers during the six-year period
from 2002 to 2008. In all we recorded 498 defects in this
database.

In order to identify the main sources of complexity in
device drivers, we distinguish between errors caused by the
complexity of interacting with the device, errors caused by
the complexity of interacting with the operating system, and
generic programming errors. Specifically, we distinguished
the following categories of driver software faults:
Device protocol violations occur when the driver behaves
in a way that violates the required hardware protocol, and
typically result in a failure of the hardware to provide its
required service. These include putting the device into an in-
correct state, mis-interpreting device state, incorrectly pars-
ing or generating data exchanged with the device, issuing
a sequence of commands to the device that violates the de-
vice protocol, specifying incorrect timeout values for device
operations, and endianness violations. Device protocol vio-
lations constitute 38% of the overall defects (Table 1).

According to our study, at least one third of the faults
in device-control logic are caused by poorly documented
device behaviour. Such faults are particularly common when
device documentation is not readily available, and the driver
is produced by reverse engineering a driver from another OS.

A portion of these faults are also caused by devices whose
behaviour deviates from the hardware interface standards
that they are meant to implement. Similar faults are due
to devices that violate their documented behaviour. In both
these cases, drivers that expect hardware to behave according
to the standards or documentation will function incorrectly
and must be fixed by adding appropriate workarounds.
Software protocol violations occur when the driver per-
forms an operation that violates the required protocol with
the OS. This includes all violations of expected order-
ing, format or timing in interactions between the OS and
the driver. These faults are particularly common in error-
handling paths and code paths handling uncommon situa-
tions such as hot-unplug and power management requests,
which are often insufficiently tested.

Examples of ordering violations include forgetting to wait
for a completion callback from an asynchronous data request
(data protocol violation), trying to resume a suspended de-
vice before restoring its PCI power state (power manage-
ment protocol violation), and forgetting to release a resource
or releasing resources in the wrong order (resource owner-
ship protocol violation). Examples of format violations in-
clude incorrectly modifying a data structure shared with the
OS, incorrectly initialising a driver descriptor before passing
it to the OS, and falsely returning a success status from an
operation that failed.

Software protocol violations constitute 20% of the overall
driver defects. Statistics for the frequencies of different types
of protocol violations are shown in Table 2.

Type of faults #

Ordering violations
Driver configuration protocol violation 16
Data protocol violation 9
Resource ownership protocol violation 8
Power management protocol violation 8
Hot unplug protocol violation 5

Format violations
Incorrect use of OS data structures 29
Passing an incorrect argument to an OS service 19
Returning invalid error code 7

Table 2. Types of software protocol violations.

Concurrency faults occur when a driver incorrectly syn-
chronises multiple threads of control executing within it,
causing a race condition or a deadlock.

Unlike the previous bug categories, concurrency bugs are
not related to a particular aspect of the driver functionality,
but rather to the model of computation enforced by the OS
on device drivers. Any non-trivial device driver is involved
in several concurrent activities, including handling I/O re-
quests, processing interrupts, and dealing with power man-
agement and hot-plugging events. Most operating systems
are designed to run these activities in separate threads that
invoke the driver in parallel. This multithreaded model of
computation requires the driver to protect itself from race
conditions using a variety of synchronisation primitives. In
addition, a driver in the kernel environment has to keep track
of the synchronisation context in which it is invoked. For in-
stance, a driver running in the context of an interrupt handler
is not allowed to perform any potentially blocking opera-
tions.

Concurrency management accounts for 19% of the total
number of bugs. In Figure 2 we see that the rate of con-
currency bugs is higher in USB drivers (26.5%) and IEEE
1394 drivers (23.5%) than in PCI drivers (9%). USB and
IEEE 1394 buses support hot-plugging, which introduces a
device disconnect event to the driver interface. Disconnect
happens asynchronously to all other activities, causing race
conditions in all USB and IEEE 1394 drivers covered by our
study. In addition, since these buses are not memory mapped,
communication with the device is based on asynchronous
messages, which adds another degree of concurrency to the
driver logic.

Statistics for different types of concurrency faults are
shown in Table 3. From this we see that concurrency faults
are mostly introduced in situations where a sporadic event,
such as a hot-unplug notification or a configuration request,
occurs while the driver is handling a stream of data requests.
Generic programming faults This category of bugs in-
cludes common coding errors, such as memory allocation er-
rors, typos, missing return value checks, and program logic
errors. These errors account for the remaining 23% of de-
fects.
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Name Description Total faults
Device prot.
violations

S/W protocol
violations

Concurrency
faults

Generic faults

USB drivers
rtl8150 rtl8150 USB-to-Ethernet adapter 16 3 2 7 4
catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4
usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11
usb serial USB-to-serial converter 50 2 17 13 18
usb storage USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6

PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
i810 fb i810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 1. Classified counts of driver faults. The maxima in each row are in bold face. The highlighted cells summarise the
types of faults that we focus on in the rest of the paper.
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Figure 2. Summary of software faults by driver type.

Type of faults #

Race or deadlock in configuration functions 29
Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions 5
Using uninitialised synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock 1

Table 3. Types of concurrency faults.

3. Dingo device driver architecture
Our driver defect study has revealed areas where better OS
support could improve driver reliability. In particular two
categories of faults are directly related to how the driver in-
teracts with the OS: concurrency faults and software proto-
col violations. Together, these faults constitute 39% of the
defects in our study, and are clearly a significant source of
problems for drivers.

To address these issues, we developed Dingo, a new ar-
chitecture for device drivers that simplifies interaction with
the OS and allows driver developers to focus on the main
task of a driver: controlling the hardware. Dingo achieves
this via two improvements over traditional driver architec-
tures. First, Dingo reduces the amount of concurrency that
the driver must handle by replacing the driver’s traditional
multithreaded model of computation with an event-driven
model. This model eliminates the majority of concurrency-
related driver faults without impacting the performance. Sec-
ond, Dingo provides a formal language for describing driver
software protocols, which avoids confusion and ambiguity,
and helps driver writers implement correct protocols.

Dingo does not attempt to provide solutions to deal with
the other types of defects identified (i.e., device protocol
violations and generic programming faults) since these are
provoked by factors that lie beyond the influence of the OS
and should be eliminated by complementary means such as
those surveyed in Section 10.
Overview of Dingo Dingo specifies a model for commu-
nication between a driver and its environment. Communi-
cation occurs over ports, which are bidirectional message-
based communication points. In a typical implementation,
ports are represented by function tables and messages are
delivered by invoking the corresponding functions. Dingo
guarantees atomic message delivery resulting in a strict or-
dering of all messages exchanged by drivers.

Each port is associated with a protocol, which specifies a
behavioural contract between the driver and the framework.
It defines the messages that can be exchanged over that port
as well as constraints on the ordering, timing and content of
those messages. Every port has exactly one protocol asso-
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[from L. Ryzhyk et al., “Dingo: Taming device drivers”, 
Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]



Improving Device Drivers – Engineering

• Model device drivers in object-oriented manner
• Device drivers generally fit some hierarchy 

• Use object-oriented language; encode common logic into a superclass, 
instantiated by device-specific subclasses that encode hardware details
• May be able to encode protocol state machines in the superclass, and leave the details of the 

hardware access to subclasses (e.g., for Ethernet or USB drivers)

• May be able to abstract some of the details of the locking, if the hardware is similar enough

• Might require multiple inheritance or mixins to encode all the details of the 
hardware, especially for multi-function devices

• Implementation choices – device driver framework
• Linux kernel implements this model in C, with much boilerplate 

• MacOS X uses restricted subset of C++ within kernel – simplifies driver 
development by encoding high-level semantics within framework, leaves 
only device-specific details to individual drivers
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Apple, Inc. “I/O Kit Fundamentals”, 2007
http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFundamentals.pdf

http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFundamentals.pdf
http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFundamentals.pdf


Improving Device Drivers – State Models

• An ad-hoc device driver model is common
• Many bugs due to poor specification and documentation of the model

• Use of object-oriented languages can improve this somewhat, but need 
careful integration into C-based kernels

• Possible to formalise design as a state machine
• Make underlying state machine visible in the implementation – MacOS X 

I/O Kit models incoming events, but not the states, allowable transitions, 
or generated events

• Could formally define full state machine in source code, allow automatic 
verification that driver implements the state machine for its device class, 
and model checking of the state machine
• Can be implemented within existing languages, by annotating the code

• Fits better with more sophisticated, strongly-typed, languages, that can directly model system

9



Improving Device Drivers – State Models
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G. Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM 
SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424

IO_CONFIGURE_ACK

IO_RUNNING

START

IO_CONFIGURE_BEGIN

!DeviceInfo

?RegisterForEvents

?SetParameters!InvalidParameters

IO_CONFIGURED

!Success

?StartIO

?ConfigureIO

?PacketForReceive

?GetReceivedPacket

A key experiment in the Singularity project is to construct an 
entire operating system using SIPs and demonstrate that the 
resulting system is more dependable than a conventional system. 
The results so far are promising. SIPs are cheap enough to fit a 

software development granularity of one developer or 
team per SIP and light-weight enough to provide fault-stop 
boundaries for aberrant behavior. 

2.2 Contract-Based Channels 
All communication between SIPs in Singularity flows through 
contract-based channels. A channel is a bi-directional message 
conduit with exactly two endpoints. A channel provides a lossless, 
in-order message queue. Semantically, each endpoint has a 
receive queue. Sending on an endpoint enqueues a message on the 

queue. A channel endpoint belongs to 
exactly one thread at a time. Only the owning thread 
can dequeue messages from its receive queue or send messages to 
its peer. 
Communication across a channel is described by a channel 
contract. The two ends of a channel are not symmetric in a 
contract. One endpoint is the importing end (Imp) and the other is 
the exporting end (Exp). In the Sing# language, the endpoints are 
distinguished by types C.Imp and C.Exp, respectively, where C is 
the channel contract governing the interaction. 
Channel contracts are declared in the Sing# language. A contract 
consists of message declarations and a set of named protocol 
states. Message declarations state the number and types of 
arguments for each message and an optional message direction. 
Each state specifies the possible message sequences leading to 
other states in the state machine. 
We will explain channel contracts through a condensed version of 
the contract for network device drivers shown in Listing 1. A 
channel contract is written from the perspective of the SIP 
exporting a service and starts in the first listed state. Message 
sequences consist of a message tag and a message direction sign 
(! for Exp to Imp), and (? for Imp to Exp). The message direction 
signs are not strictly necessary if message declarations already 
contain a direction (in, out), but the signs make the state 
machine more human-readable. 
In our example, the first state is START and the network device 
driver starts the conversation by sending the client (probably the 
network stack) information about the device via message 
DeviceInfo. After that the conversation is in the 
IO_CONFIGURE_BEGIN state, where the client must send message 
RegisterForEvents to register another channel for receiving 
events and set various parameters in order to get the conversation 
into the IO_CONFIGURED state. If something goes wrong during 
the parameter setting, the driver can force the client to start the 
configuration again by sending message InvalidParameters.
Once the conversation is in the IO_CONFIGURED state, the client 
can either start I/O (by sending StartIO), or reconfigure the 
driver (ConfigureIO). If I/O is started, the conversation is in 

state IO_RUNNING. In state IO_RUNNING, the client provides the 
driver with packet buffers to be used for incoming packets 
(message PacketForReceive). The driver may respond with 
BadPacketSize, returning the buffer and indicating the size 
expected. This way, the client can provide the driver with a 
number of buffers for incoming packets. The client can ask for 
packets with received data through message GetReceived-
Packet and the driver either returns such a packet via 
ReceivedPacket or states that there are no more packets with 
data (NoPacket). Similar message sequences are present for 
transmitting packets, but we elide them in the example. 
From the channel contract it appears that the client polls the driver 
to retrieve packets. However, we have not yet explained the 
argument of message RegisterForEvents. The argument of 
type NicEvents.Exp:READY describes an Exp channel endpoint 
of contract NicEvents in state READY. This endpoint argument 
establishes a second channel between the client and the network 
driver over which the driver notifies the client of important events 
(such as the beginning of a burst of packet arrivals). The client 
retrieves packets when it is ready through the NicDevice
channel. Figure 2 shows the configuration of channels between 
the client and the network driver. The NicEvents contract 
appears in Listing 2. 

contract NicDevice { 
oout message DeviceInfo(...); 
iin  message RegisterForEvents(NicEvents.Exp:READY 
c); 
iin  message SetParameters(...); 
oout message InvalidParameters(...); 
oout message Success(); 
iin  message StartIO(); 
iin  message ConfigureIO(); 
iin  message PacketForReceive(byte[] in ExHeap p); 
oout message BadPacketSize(byte[] in ExHeap p, int 
m); 
iin  message GetReceivedPacket(); 
oout message ReceivedPacket(Packet * in ExHeap p); 
oout message NoPacket(); 
 
sstate START: one { 

 
} 
sstate IO_CONFIGURE_BEGIN: oone { 

 
 

} 
sstate IO_CONFIGURE_ACK: oone { 

 
IO_CONFIGURED; 

} 
sstate IO_CONFIGURED: oone { 

 
ConfigureIO?  IO_CONFIGURE_BEGIN; 

} 
sstate IO_RUNNING: oone { 

(Success! or BadPacketSize!) 
 

 or 
NoPacket!) 

 
... 

} 
} 

Listing 1. Contract to access a network device driver. 
contract NicEvents { 

eenum NicEventType { 
NoEvent, ReceiveEvent, TransmitEvent, LinkEvent 

} 
 
oout message NicEvent(NicEventType e); 
iin message AckEvent(); 
 
state READY: oone { 

AckEvent? !READY; 
} 

} 

Listing 2. Contract for network device events. 

Figure 2. Channels between a network driver and stack. 

NicDevice

NetStack NIC DriverNicEvents

Imp

Imp

Exp

Exp
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Example: the Singularity operating system from 
Microsoft Research

http://dx.doi.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/1243418.1243424


Improving Device Drivers – Discussion

• Focus on low-level implementation techniques and 
high-performance in many device driver models

• Not necessarily appropriate in embedded systems?

• Raising level of abstraction can reduce error-prone 
boilerplate, allow compiler to diagnose problems
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Correctness and System Longevity

• Systems may be safety critical or difficult to update
• Medical devices, automotive or flight control, industrial machinery

• DVD player, washing machine, microwave oven, car engine controller

• Might need to run for many years, in environments 
where failures either cause injury or are expensive 
to fix
• Can you guarantee your system will run for 10 years without crashing?

• Do you check all the return codes and handle all errors?

• Fail gracefully?
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Low-level Programming Environment

• Embedded systems often constrained hardware
• May have limits on power consumption (e.g., battery powered)

• May have to be physically small and/or robust

• May have strict heat production limits

• May have strict cost constraints

• Used to throwing hardware at a problem, writing 
inefficient – but easy to implement – software
• Software engineering based around programmer productivity

• Constraints differ in embedded systems – optimise for correctness, cost, 
then programmer productivity
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Development and Debugging

• Systems may be too limited to run compiler
• Develop using a cross compiler running on a PC, download code using a 

serial line, or by burning a flash ROM and installing

• May have limited debugging facilities:
• Serial line connection to host PC

• LEDs on the development board

• Logic analyser or other hardware test equipment

• Formal proofs of correctness become more attractive when real system 
so difficult to analyse… 

14



Alternative Programming Models

• Move away from C as an implementation language
• Lack of type- and memory-safety leads to numerous bugs and security 

vulnerabilities

• Limited support for concurrency – race conditions, locking problems – 
makes it unsuitable for modern machine architectures

• Move towards architectures with a minimal kernel, 
and strong isolation between other components of 
the operating system
• The monolithic part of a kernel is a single failure domain; this needs to be 

reduced to a minimum → microkernel architecture

• Easier to debug and manage components when they’re isolated from 
each other, and communicate only through well-defined channels
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Type- and Memory-Safe Languages

• Type safe language → protects its abstractions
• Undefined behaviour prohibited by compiler/type system

• The language specification can require that array bounds 
are respected, specify the error response to violation, etc.

• More sophisticated type systems can catch more complex 
errors – e.g., enforce a socket is connected, check that an 
input string is correctly escaped to avoid SQL injection on 
web forms… 

• Requires both compile- and run-time checking
• The type system specifies legal properties of the program 

“for proving the absence of certain program behaviours”

• Some properties can be statically checked by a compiler: 
a faulty program will not compile until the bug is fixed

• Some properties require run-time checks: failure causes a 
controlled error

• Doesn’t guarantee system works correctly, but ensures it 
fails in a predictable and consistent way

• Doesn’t require byte-code virtual machine; can 
have efficient implementation
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-->cat tst.c
#include <stdio.h>

int main()
{
  int x;
  int a;
  int b[13];
  int c;

  a = 1;
  c = 2;

  for (x = 0; x <= 13; x++) {
    b[x] = x;
  }

  printf("a = %d\n", a);
  printf("c = %d\n", c);
  
  return 0;
}
-->gcc -std=c99 tst.c -o tst
-->./tst
a = 1
c = 13
-->



Modularity and Microkernels

• Desirable to separate components of a system, so 
failure of a component doesn’t cause failure of the 
entire system

• Microkernel operating system
• Strip-down monolithic kernel to essential services; run everything else in 

user space communicating via message passing API
• This includes devices drivers, network stack, etc.

• Kernel just managing process scheduling, isolation, and message passing

• Widely used in embedded systems, where robustness and flexibility to run 
devices for unusual hardware are essential features

• But typically poor performance: frequent context switches expensive, due 
to need to cross kernel-user space boundary, manage memory protection, 
etc.
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Strongly Isolated Systems

• A possible solution:
• Microkernel that enforces all code written in a safe language (e.g., by only 

executing byte code, no native code)
• This includes device drivers and system services running outside the microkernel

• Type system prevents malicious code obtaining extra permissions by 
manipulating memory it doesn’t own – done entirely in software; no need 
to use MMU to enforce process separation

• A software isolated message passing process architecture – loosely 
coupled and well suited to multicore hardware

• Example: the Singularity operating system from Microsoft Research

• Relies on modern programming language features
• Combination is novel, but individual pieces are well understood
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Discussion

19

• Real-time and embedded systems have unique 
constraints; strong correctness concerns

• Low-level programming model was necessary for 
efficiency – alternatives for modern systems?

• Further reading:
• J. Shapiro, “Programming language challenges in systems codes: why 

systems programmers still use C, and what to do about it”, Proc. 3rd 
workshop on Programming Languages and Operating Systems, San 
Jose, CA, October 2006. DOI:10.1145/1215995.1216004

• G. Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM 
SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424

• Both papers will be discussed in tutorial 3

http://dx.doi.org/10.1145/1215995.1216004
http://dx.doi.org/10.1145/1215995.1216004
http://dx.doi.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/1243418.1243424

