P Unaversity | School of
of Glasgow | Computing Science

Real-time & Embedded Systems Programming

Advanced Operating Systems
Lecture 7

Lecture Outline

® Ensuring predictable timing

¢ Embedded systems

e (Constraints
® |nteracting with hardware

e Device drivers

® (Correctness and system longevity

® | ow-level programming environments

e (Current and alternative approaches

Ensuring Predictable Timing

e Scheduling theory gives proof of correctness — if
timing of system well understood

e Numerous sources of unpredictability

Timing variation due to dependence on algorithm input values — measure
Blocking due to resource access

Preemption by higher priority tasks or interrupt handlers

Processor cache improves average timing, with poor worst-case bounds
Virtual memory — address translation, paging, memory protection

Memory allocation and management —malloc () or garbage collector

® Avoid by defensive programming

Disable or avoid features that cause timing variation

Optimise for predictability, not raw performance

3

Embedded Systems

® (Constraints on embedded systems:

® Must interact with hardware to manipulate their environment — custom
device drivers and low-level hardware access in application code

e Safety critical or simply hard to upgrade — strong correctness constraints

e (Often resource constrained, with a low-level programming model

® |ssues differ from those inherent in traditional
desktop application programming

Interacting with Hardware

e Devices represented by bit fields at known address i s®uct ¢

short errors : 4;
e Bit-level manipulation needed to access fields in control register e ol o, 3’
e Code needs memory address and size of control register, layout, | :ig’;: fzgienable 1"
endianness, and meaning of bit fields within the register e
o o o § short dev_func 1 2;
e (allows definition of bit fields and explicit access to | oeShort dev_enable : 1,
: : : i} ctrl_reg;
particular memory addresses via pointers — needed | |
for implementation of device drivers e 5
_ . _ ctrl_reg *r = 0x80000024; :
® |llusion of portability — standard C does not specify: | ctrl reg tmp; =
e Size of basic types (e.g., a char is not required to be 8 bits, an ;‘;‘P(:m;réusy o
int is not required to be 32 bits, etc.) tmp:irq_enable = 1;
e Bit and byte ordering r:t:rszi

}

return O;

e Alignment or atomicity of memory access

e Each compiler/operating system defines these for its environment;
the <stdint.h>and <l1imits.h> headers provide definitions to Example: hardware access in C

help with portability, but with weak type checking
® Device drivers written in C a frequent source of bugs

e Other languages (e.g., Ada) provide strict definitions
and allow for stronger type checking

5

Sources of Bugs in Device Drivers (1)

Name Description Total faults D'ewc'e prot. S./W protocol Concurrency Generic faults
violations violations faults
USB drivers

rtI8150 rtI8 150 USB-to-Ethernet adapter 16 3 2 7 -

catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 -

usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11

usb serial USB-to-serial converter 50 2 17 13 18
usb storage | USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6
PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx?2 bnx2 network driver 51 35 4 5 7
1810 fb 1810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1
Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)
yd N

-~

N

Can we address these through improvements to

Fix through device documentation and better
the supporting infrastructure for device-drivers?

language support for low-level programming?

Summary cause of bugs found in Linux USB, Firewire (IEEE 1394), and PCI drivers from 2002-2008
[from L. Ryzhyk et al., “Dingo: Taming device drivers”, Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Device protocol violations are mis-programming of the hardware, software protocol violations and
concurrency faults are invalid interactions with the rest of the Linux kernel

6

Sources of Bugs in Device Drivers (2)

e \What causes software protocol violations and [Type of fauits #
) Ordering violations
concu rrency fau ItS . Driver configuration protocol violation 16
. . .] . Data protocol violation 9
e Misunderstanding or misuse of the kernel device driver Resource ownership protocol violation 3
API functions, especially in uncommon code paths (e.g., Power management protocol violation 8
error handling, hot-plug, power management) Hot unplug protocol violation 5
. . Format violations
e |ncorrect use of locks leading to race conditions and Incorrect use of OS data siructures 29
deadlocks Passing an incorrect argument to an OS service | 19
Returning invalid error code 7

Table 2. Types of software protocol violations.

e Bad programming and poor documentation of [Typeof faults | # |
. .) Race or deadlock in configuration functions 29
ke ' el AP I S an d IOCkl ng req uireme ntS . Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
° O rerror- p rone p rog ramm I n g | an g ua g es ’ Ezzz gi jzzgigii IE gi)ewiitilzit;gement functions ;
concurren Cy m Od e I S ; an d bad Iy d es | g N ed Using uninitialised synchronisation primitive 2
Imbalanced locks 2
ke n el AP I S? Calling an OS service without an appropriate lock | 1

Table 3. Types of concurrency faults.

[from L. Ryzhyk et al., “Dingo: Taming device drivers”,
Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Improving Device Drivers — Engineering

® Model device drivers in object-oriented manner

e Device drivers generally fit some hierarchy

e Use object-oriented language; encode common logic into a superclass,
instantiated by device-specific subclasses that encode hardware details

° May be able to encode protocol state machines in the superclass, and leave the details of the
hardware access to subclasses (e.g., for Ethernet or USB drivers)

° May be able to abstract some of the details of the locking, if the hardware is similar enough

e Might require multiple inheritance or mixins to encode all the details of the
hardware, especially for multi-function devices

® |mplementation choices — device driver framework

® Linux kernel implements this model in C, with much boilerplate

e MacOS X uses restricted subset of C++ within kernel — simplifies driver
development by encoding high-level semantics within framework, leaves
only device-specific details to individual drivers

: Apple, Inc. “I/O Kit Fundamentals”, 2007
http://developer.apple. com/llbrary/mac/documentatlon/DewceDrlvers/ConceptuaI/IOKltFundamentals/lOKltFundamentaIs pdf

http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFundamentals.pdf
http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFundamentals.pdf

Improving Device Drivers — State Models

® An ad-hoc device driver model iIs common

e Many bugs due to poor specification and documentation of the model

e Use of object-oriented languages can improve this somewhat, but need
careful integration into C-based kernels

® Possible to formalise design as a state machine

e Make underlying state machine visible in the implementation — MacOS X
/O Kit models incoming events, but not the states, allowable transitions,
or generated events

e (Could formally define full state machine in source code, allow automatic
verification that driver implements the state machine for its device class,
and model checking of the state machine

e (Can be implemented within existing languages, by annotating the code
e Fits better with more sophisticated, strongly-typed, languages, that can directly model system

Improving Device Drivers — State Models

Example: the Singularity operating system from contract Nicoevice | _
out message DeviceInfo(...); _
MICFOSOft ReSGaFCh 1cs1 message RegisterForEvents(NicEvents.Exp:READY

in message SetParameters(...);
out message InvalidParameters(...);
out message Success();
in message Sta;tlo(); o

| i 1n message ContigureIO();
START IDevicelnfo in message PacketForReceive(byte[] in ExHeap p);
ogt message BadPacketSize(byte[] in ExHeap p, int
m);
in

message GetReceivedPacket();
?RegisterForEvents out message ReceivedPa(_:ket(Packet * in ExHeap p);
out message NoPacket();

state START: one {
|IO_CONFIGURE_BEGIN , DeviceInfo! - IO_CONFIGURE_BEGIN;

state IO_CONFIGURE_BEGIN: one {

lInvalidParameters l?SetParameters RegisterForEvents? -
SetParameters? - IO_CONFIGURE_ACK;

}
state IO_CONFIGURE_ACK: one {
IO_CONFIGURE_ACK InvalidParameters! - IO_CONFIGURE_BEGIN;

Success! - IO_CONFIGURED;

, ks
?ConfigurelO l!SucceSS state IO_CONFIGURED: one {

StartIO? - IO_RUNNING;
ConfigureIO? - IO_CONFIGURE_BEGIN;

|O_CONFIGURED

state IO_RUNNING: one {

PacketForReceive? - (Success! or BadPacketSize!)

?StartlO ?PacketForReceive > IO_RUNNING;
GetReceivedPacket? -» (ReceivedPacket! or
NoPacket!)

I0_RUNNING ~ TO_RUNNING;
}
}
?GetReceivedPacket Listing 1. Contract to access a network device driver.

: G. Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM
: SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424 ;

r
'
'
'
'

http://dx.doi.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/1243418.1243424

Improving Device Drivers — Discussion

® Focus on low-level implementation techniques and
high-performance in many device driver models

® Not necessarily appropriate in embedded systems?

e Raising level of abstraction can reduce error-prone
boilerplate, allow compiler to diagnose problems

11

Correctness and System Longevity

o Systems may be safety critical or difficult to update

e Medical devices, automotive or flight control, industrial machinery

e DVD player, washing machine, microwave oven, car engine controller

e Might need to run for many years, in environments
where failures either cause injury or are expensive
to fix

e (Can you guarantee your system will run for 10 years without crashing?
® Do you check all the return codes and handle all errors?

e Fail gracefully?

12

Low-level Programming Environment

® Embedded systems often constrained hardware

e May have limits on power consumption (e.g., battery powered)
e May have to be physically small and/or robust
e May have strict heat production limits

e May have strict cost constraints

e Used to throwing hardware at a problem, writing
inefficient — but easy to implement — software

e Software engineering based around programmer productivity

e (Constraints differ in embedded systems — optimise for correctness, cost,
then programmer productivity

13

Development and Debugging

o Systems may be too limited to run compiler

e Develop using a cross compiler running on a PC, download code using a
serial line, or by burning a flash ROM and installing

¢ May have limited debugging facilities:

e Serial line connection to host PC
e | EDs on the development board
® | ogic analyser or other hardware test equipment

e Formal proofs of correctness become more attractive when real system
so difficult to analyse...

14

Alternative Programming Models

® Move away from C as an implementation language

Lack of type- and memory-safety leads to numerous bugs and security
vulnerabilities

Limited support for concurrency — race conditions, locking problems —
makes it unsuitable for modern machine architectures

® Move towards architectures with a minimal kernel,
and strong isolation between other components of
the operating system

The monolithic part of a kernel is a single failure domain; this needs to be
reduced to a minimum — microkernel architecture

Easier to debug and manage components when they're isolated from
each other, and communicate only through well-defined channels

15

Type- and Memory-Safe Languages

e Type safe language — protects its abstractions

Undefined behaviour prohibited by compiler/type system

The language specification can require that array bounds
are respected, specify the error response to violation, etc.

More sophisticated type systems can catch more complex
errors — e.g., enforce a socket is connected, check that an
input string is correctly escaped to avoid SQL injection on
web forms...

e Requires both compile- and run-time checking

The type system specifies legal properties of the program
“for proving the absence of certain program behaviours”

Some properties can be statically checked by a compiler:
a faulty program will not compile until the bug is fixed

Some properties require run-time checks: failure causes a
controlled error

Doesn’t guarantee system works correctly, but ensures it
fails in a predictable and consistent way

e Doesn’t require byte-code virtual machine; can
have efficient implementation

16

E——>cat tst.c
i#include <stdio.h>

Eint main ()
o
© int x;
int a;
int b[13];
int c;

0; x <= 13; x++) {E
X; E

$d\n", a);
$d\n", c);

printf("a
printf("c

: return O;

) =
: —->gcc -std=c99 tst.c -o tst i
i-->./tst '
a=1

ic = 13 4—

Modularity and Microkernels

® Desirable to separate components of a system, so
fallure of a component doesn’t cause failure of the
entire system

® Microkernel operating system

e Strip-down monolithic kernel to essential services; run everything else in
user space communicating via message passing API

e This includes devices drivers, network stack, etc.

e Kernel just managing process scheduling, isolation, and message passing

e \Widely used in embedded systems, where robustness and flexibility to run
devices for unusual hardware are essential features

e But typically poor performance: frequent context switches expensive, due
to need to cross kernel-user space boundary, manage memory protection,
etc.

17

Strongly Isolated Systems

® A possible solution:

e Microkernel that enforces all code written in a safe language (e.g., by only
executing byte code, no native code)

° This includes device drivers and system services running outside the microkernel

e Type system prevents malicious code obtaining extra permissions by
manipulating memory it doesn’t own — done entirely in software; no need
to use MMU to enforce process separation

® A software isolated message passing process architecture — loosely
coupled and well suited to multicore hardware

e Example: the Singularity operating system from Microsoft Research

® Relies on modern programming language features

e Combination is novel, but individual pieces are well understood

18

Discussion

¢ Real-time and embedded systems have unique
constraints; strong correctness concerns

® | ow-level programming model was necessary for
efficiency — alternatives for modern systems?

e Further reading:

e J. Shapiro, “Programming language challenges in systems codes: why
systems programmers still use C, and what to do about it”, Proc. 3rd
workshop on Programming Languages and Operating Systems, San
Jose, CA, October 2006. DOI:10.1145/1215995.1216004

e G. Huntand J. Larus. “Singularity: Rethinking the software stack”, ACM
SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424

e Both papers will be discussed in tutorial 3

19

http://dx.doi.org/10.1145/1215995.1216004
http://dx.doi.org/10.1145/1215995.1216004
http://dx.doi.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/1243418.1243424

