
Resource Management

Advanced Operating Systems
Lecture 6

Lecture Outline

• Definitions of resources

• Resource access control for static systems
• Priority inheritance protocol

• Basic priority ceiling protocol

• Stack-based priority ceiling protocol

• Resource access control for dynamic systems

• Effects on scheduling

• Implementation choices

2

Resources

• A system has ρ types of resource R1, R2, …, Rρ
• A plentiful resource has no effect on scheduling, and is ignored

• Resources used by jobs in a non-preemptive and mutually exclusive
manner; resources are serially reusable

• Access to resources is controlled using locks
• Jobs attempt to lock a resource before starting to use it, and unlock the

resource afterwards; the time the resource is locked is the critical section

• If a lock request fails, the requesting job is blocked; a job holding a lock
cannot be preempted by a higher priority job needing that lock

• Critical sections may nest if a job needs multiple simultaneous resources

3

• Jobs contend for a resource if they try to lock it at
once:

• Priority inversion occurs when a low-priority job executes while some
ready higher-priority job waits

• Deadlock can result from piecemeal acquisition of resources
• The classic solution is to impose a fixed acquisition order over the set of lockable resources,

and all jobs attempt to acquire the resources in that order (typically LIFO order)

Resource Contention

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J3

J2

Preempt J3

J1

Preempt J3

J2 blocks

J1 blocks

EDF schedule of J1, J2 and J3 sharing a resource protected
by locks (blue shading indicated critical sections). The red
lines indicate release times and deadlines of jobs.

Priority inversion

Inheritance of Priority

• A standard scheduling algorithm gives each job an
assigned priority

• At some time t, a job Jk has a current priority, πk(t);
this can differ from it’s assigned priority
• Due to uncontrolled priority inversion, or controlled inheritance of priority

for purposes of managing blocking time

• This can obviously affect correctness of the schedule

5

Resource Contention – Timing Anomalies

• Resource contention can cause timing anomalies
due to priority inversion and deadlock – potentially
arbitrary duration, and can seriously disrupt timing

• Cannot eliminate anomalies, but protocols exist to
control them:
• Priority inheritance protocol

• Basic priority ceiling protocol

• Stack-based priority ceiling protocol

6

Priority Inheritance Protocol

• Aim: control inheritance of priority during resource
access to reduce the duration of timing anomalies

• Constraints:
• Works with any pre-emptive, priority-driven scheduling algorithm

• Does not require any prior knowledge of resource requirements

• Does not prevent deadlock, but if some other mechanism used to prevent
deadlock, ensures that no job can block indefinitely due to uncontrolled
priority inversion

7

Priority Inheritance: Scheduling Rules

• Jobs scheduled according to current priority
• At release time, current priority equals assigned priority of the job

• Current priority remains equal to assigned priority, unless priority-
inheritance is invoked:

• When a job, J, becomes blocked, the job Jl which blocks J inherits the current priority π(t) of J

• Jl executes at its inherited priority until it releases R; at that time, the priority of Jl returns to its
priority πl(t′) at the time t′ when it acquired the resource R

• When a job J requests a resource R at time t:
• If R is free, R is allocated to J until J releases it

• If R is not free, the request is denied and J is blocked

• J is only denied R if the resource is held by another job

8

Priority Inheritance Protocol: Example

9

J4

J3

J2

J1

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Job ri ei πi Critical Sections

J1 7 3 1 [; 1]

J2 5 3 2 [; 1]

J3 4 2 3

J4 2 6 4 [; 4 [; 1.5]]

J5 0 6 5 [; 4]

What does the schedule look like?

Jobs 1, 2, 4, 5 acquire resource after 1 time unit
Job 4 acquires blue after further 2 units

Run with inherited priority

Priority Inheritance Protocol: Example

10

J4

J3

J2

J1

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

J2 directly blocked by J5 due to the
lock J5 has on the resource

J3 preempted by J2

J3 blocked because J5

inherits priority of J2

Transitive blocking:
J5 blocks J4 blocks J1

Jobs may block for many different reasons…

Properties of Priority Inheritance Protocol

11

• Simple to implement, needs no prior knowledge of
resource requirements

• Jobs exhibit different types of blocking
• Direct blocking due to resource locks

• Priority-inheritance blocking

• Transitive blocking

• Lower blocking time than prohibiting preemption
during critical sections, but does not guarantee to
minimise blocking

• Deadlock is not prevented: need to manage lock
acquisition order in addition

Basic Priority Ceiling Protocol

• Sometimes want to further reduce blocking times

• Basic priority ceiling protocol does this, provided:
• The assigned priorities of all jobs are fixed (e.g. RM scheduling, not EDF)

• The resources required by all jobs are known a priori

• Need two additional terms to define the protocol:
• The priority ceiling of any resource Rk is the highest priority of all the jobs

that require Rk and is denoted by Π(Rk)

• At any time t, the current priority ceiling Π(t) of the system is equal to the
highest priority ceiling of the resources that are in use at the time

• If all resources are free, Π(t) is equal to Ω, a nonexistent priority level that
is lower than the lowest priority level of all jobs

12

Basic Priority Ceiling: Scheduling Rules (1)

• Scheduling rules:
• Priority-driven scheduling; jobs can be preempted

• The current priority of a job equals its assigned priority, except when the
priority-inheritance rule (see next slide) is invoked

• Resource allocation rule:
• When a job J requests a resource R held by another job, the request fails

and the requesting job blocks

• When a job J requests a resource R that is available:
• if J’s priority π(t) is higher than current priority ceiling Π(t):

| R is allocated to J
else
| if J is the job holding the resource(s) whose priority ceiling is equal to Π(t):
| | R is allocated to J
| else
| | the request is denied, and J becomes blocked

• Unlike priority inheritance: can deny access to an available resource

13

Basic Priority Ceiling: Scheduling Rules (2)

• Priority-inheritance rule:
• When the requesting job, J, becomes blocked, the job Jl which blocks J

inherits the current priority π(t) of J

• Jl executes at its inherited priority until the time when it releases every
resource whose priority ceiling is equal to or higher than π(t); then, the
priority of Jl returns to its priority πl(t′) at the time t′ when it was granted the
resource(s)

14

Basic Priority Ceiling Protocol: Example

J4

J3

J2

J1

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Job ri ei πi Critical Sections

J1 7 3 1 [; 1]

J2 5 3 2 [; 1]

J3 4 2 3

J4 2 6 4 [; 4 [; 1.5]]

J5 0 6 5 [; 4]

What does the schedule look like?

J4 requests red
but is denied,
since π4 < Π

J2 requests blue but is blocked
since locked by J5 (which
inherits priority 2)

Π remains =1
since red in use

Significant reduction
in execution time for
some tasks compared
to priority inheritance

Π = Ω 2 2 2 2 2 2 2 1 2 2 2 Ω Ω 1 1 1 1 Ω Ω Ω

Basic Priority Ceiling Protocol: Properties

16

• If resource access in a system of preemptable,
fixed priority jobs on one processor is controlled by
the priority-ceiling protocol:
• Deadlock can never occur

• A job can be blocked for at most the duration of one critical section: there
is no transitive blocking

• Differences between the priority-inheritance and
priority-ceiling protocols:
• Priority inheritance is greedy, while priority ceiling is not

• The priority ceiling protocol may withhold access to a free resource, causing a job to be
blocked by a lower-priority job which does not hold the requested resource – termed
avoidance blocking

• The priority ceiling protocol forces a fixed order onto resource accesses,
thus eliminating deadlock

Stack-based Priority Ceiling Protocol

• Basic priority ceiling protocol performs well, but is
complex, and has high context switch overheads

• Stack-based priority ceiling protocol has lower cost

• Defining rules:
• Ceiling: When all resources are free, Π(t) = Ω; Π(t) updated each time a

resource is allocated or freed
• Π(t) current priority ceiling of all resources in currently use; Ω non-existing lowest priority level

• Scheduling:
• After a job is released, it is blocked from starting execution until its assigned priority is higher

than Π(t)

• Non-blocked jobs are scheduled in a pre-emptive priority manner; tasks never self-yield

• Allocation: when a job requests a resource, it is allocated
• The allocation rule looks greedy, but the scheduling rule is not

17

Stack-based Priority Ceiling Protocol

J4

J3

J2

J1

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Job ri ei πi Critical Sections

J1 7 3 1 [; 1]

J2 5 3 2 [; 1]

J3 4 2 3

J4 2 6 4 [; 4 [; 1.5]]

J5 0 6 5 [; 4]

What does the schedule look like?

Π = Ω 2 2 2 2 2 2 2 1 2 2 2 Ω Ω 1 1 1 1 Ω Ω Ω

Jobs blocked
from starting
since πi < Π

Context switches are reduced
compared to the basic priority
ceiling protocol; no jobs finish
later, but many jobs start later

Stack-based Priority Ceiling Protocol

19

• Characteristics:
• When a job starts to run, all the resource it will ever need are free (since

otherwise the ceiling would be ≥ priority)
• No job ever blocks waiting for a resource once its execution has begun

• Implies low context switch overhead

• When a job is pre-empted, all the resources the pre-empting job will
require are free, ensuring it will run to completion; deadlock cannot occur

• Longest blocking time provably not worse than the basic priority ceiling
protocol, i.e., not worse than the duration of one critical section

Choice of Resource Management Protocol

• If tasks never self yield, the stack based priority
ceiling protocol is a better choice than the basic
priority ceiling protocol
• Simpler

• Reduce number of context switches

• Can also be used to allow sharing of the run-time stack, to save memory
resources

• Both perform better than basic priority inheritance
• Assuming fixed priority scheduling, resource usage known in advance

20

Resources in Dynamic Priority Systems

• The priority ceiling protocols assume fixed priority
scheduling

• In a dynamic priority system, the priorities of the
periodic tasks change over time, while the set of
resources required by each task remains constant
• As a consequence, the priority ceiling of each resource changes over time

• Example:

• What happens if T1 uses resource X, but T2 does not?
• Priority ceiling of X is 1 for 0 ≤ t ≤ 4, becomes 2 for 4 ≤ t ≤ 5, etc. even though the set of

resources required by the tasks remains unchanged

21

T1 = (2, 0.9)
EDF

T2 = (5, 2.3)
0 1 2 3 4 5 6 7 8

T2

T1

π(T1) = 1 π(T1) = 2 π(T1) = 1

Resources in Dynamic Priority Systems

• If a system is job-level fixed priority, but task-level
dynamic priority, a priority ceiling protocol can still
be applied
• Each job in a task has a fixed priority once it is scheduled, but may be

scheduled at different priority to other jobs in the task (e.g., EDF)

• Update the priority ceilings of all jobs each time a new job is introduced;
use until updated on next job release

• Proven to work and have the same properties as
priority ceiling protocol in fixed priority systems
• But very inefficient, since priority ceilings updated frequently

• May be better to use priority inheritance protocol, accept longer blocking

22

Maximum Duration of Blocking

• Assume J1 and J2 contend for a resource, R, where
J1 is the higher priority job
• Worst case blocking time → duration of J2’s critical section over R

• When using priority inheritance protocol, J2 might
be transitively blocked for the duration of the next
priority job’s critical section
• Worst case: it is blocked by every other lower priority job, for the full

duration of each lower priority job’s critical section

23

J1

J2

Blocking time

J2 pre-empted immediately
after it locks resource R

Maximum Duration of Blocking

• The priority ceiling protocols implement avoidance
blocking, and so do not exhibit transient blocking
• Block for at most the duration of one low priority critical section

• Direct blocking: low priority jobs locks resource; can be blocked for up to the duration of the
critical section of that job

• Avoidance blocking: resource is free, but priority ceiling rules deny access

• Calculate worst case blocking duration:
• Simple:

• Assume can block for duration of longest critical section of lower priority jobs

• Probably overestimates blocking duration; likely not too significant

• More efficient:
• Trace direct conflicts with lower priority jobs, find longest critical section

• Trace indirect conflicts with lower priority jobs that may inherit priority and cause avoidance
blocking, find longest critical section

• Greatest of these is maximum possible blocking time

24

Effect of Scheduling Tests

• Jobs that block for resource access affect whether
a system can be scheduled

• How to adjust scheduling test?
• Incorporate maximum blocking time as part of execution time of job;

scheduling test then runs as normal

• Priority ceiling protocols clearly preferred where possible

25

Implementation Choices

• POSIX real-time extensions provide useful baseline
functionality
• Priority scheduling abstraction, to implement Rate Monotonic schedules

• A mutex abstraction using either priority inheritance or priority ceiling
protocols to arbitrate resource access

• Similar, sometimes more advanced features,
provided by other real-time operating systems
• Example: Ada real-time package supports the priority ceiling protocol

26

Summary

• Defined resources, timing anomalies, and need for
resource access control

• Operation of resource access control protocols:
• Priority inheritance protocol

• Basic priority ceiling protocol

• Stack-based priority ceiling protocol

• Maximum duration of blocking

• Impact on scheduling tests

27

