
Real-time Scheduling of Aperiodic and 
Sporadic Tasks (1)

Advanced Operating Systems
Lecture 4



Lecture Outline

• Aperiodic and sporadic tasks
• System model

• Acceptance test concept

• Scheduling aperiodic jobs
• Background execution

• Polling server

• Deferrable server

2



Aperiodic Tasks

• Recall: if jobs have unpredictable release times, a 
task is termed aperiodic

• Problem is to schedule their jobs without disrupting 
correctness of the system

• Aperiodic jobs are always accepted

3



Sporadic Tasks

• Recall: a sporadic task is an aperiodic task where 
jobs have deadlines once released

• Cannot guarantee systems with sporadic tasks are 
correct without bounding release or execution time
• Based on the execution time and deadline of each newly arrived sporadic 

job, decide whether to accept or reject the job
• Accepting the job implies that the job will complete within its deadline, without causing any 

periodic task or previously accepted sporadic job to miss its deadline

• Do not accept a sporadic job if cannot guarantee it will meet its deadline; the remainder of the 
system can still be scheduled

• If accepted, schedule their jobs without disrupting correctness of rest of 
the system

4



System Model

5

Processor
Aperiodic jobs

Periodic jobs

Sporadic jobs
Acceptance

Test

Rejection

S
ch

ed
ul

er
Single processor; independent, preemptable, periodic tasks can 
be scheduled in absence of aperiodic and sporadic jobs

Aperiodic and sporadic jobs are preemptable and independent

Accepted jobs placed on priority queues; each type of 
job queued separately with known queuing discipline

Scheduler selects from jobs 
at head of priority queues



Scheduling Aperiodic Jobs

6

• Consider the simple case: scheduling aperiodic 
jobs along with a system of periodic jobs
• Ignore sporadic jobs for now

• Two basic approaches:
• Background execution

• Execution using a periodic server



Background Execution of Aperiodic Jobs

• Aperiodic jobs are scheduled and executed only at 
times when there are no periodic or sporadic jobs 
ready for execution
• Clearly produces correct schedules; extremely simple to implement in 

clock-driven and priority-driven schedulers

• Not optimal since it is almost guaranteed to delay execution of aperiodic 
jobs in favour of periodic and sporadic jobs, giving unduly long response 
times for the aperiodic jobs

7

T1 = (3, 1)

T2 = (10, 4)

A : ea= 0.1

Response time = 7.7

RM schedule
of T1 and T2



Periodic Servers

• A periodic server is a task that behaves much like a 
periodic task, but created to execute aperiodic jobs
• A periodic server, Tps = (pps, eps) never executes for more than eps units of 

time within each period pps
• The budget of the server is ePS 

• Budget consumed when the server is executing, and replenished periodically

• A periodic server is backlogged if the aperiodic job queue is nonempty

• A periodic server is scheduled as any other periodic task, except it only 
executes when scheduled and when it is backlogged and has non-zero 
budget

8



Periodic Servers: Polling

• A common way to schedule aperiodic jobs is using 
a polling server – simplest periodic server
• A periodic server Tps = (ps, es) is scheduled

• When executed, it examines the aperiodic job queue:
• If an aperiodic job is in the queue, it is executed for up to es time units

• If the aperiodic queue is empty when polled, the server suspends and gives up it’s budget

• The budget is replenished to es every ps time units (and doesn’t carry over to next period)

• Simple to prove correctness – treat as periodic task
• For clock-driven or fixed-priority systems; dynamic-priority systems might 

suffer scheduling anomalies

• Gives slow response for tasks that arrive just after the polling instant

9



Periodic Servers: Deferrable

• An alternative periodic server

• Budget consumption and replenishment:
• The budget is consumed when the server executes

• Once scheduled, unused budget is retained throughout the period, to be 
used whenever there are aperiodic jobs to execute – i.e., if a job misses 
the polling instant, it can be scheduled later in the period

• The budget is replenished to eS at multiples of the period, but cannot carry 
over budget from period to period

• Improves response time of aperiodic jobs

10



Deferrable Server: Example with RM

11

0 1 2 3 4 5 6 7 8 9

T2=(p=6.5, e=0.5)

T1=(φ=2, p=3.5, e=1.5)

Periodic tasks T1 and T2 are scheduled according to the rate monotonic algorithm



Deferrable Server: Example with RM

12

Add the deferrable server, scheduled according to the rate monotonic priority, but 
with the budget consumption and replenishment rules affecting its execution time

The deferrable server is usually run at highest priority, but this is not strictly required

0 1 2 3 4 5 6 7 8 9

T1=(φ=2, p=3.5, e=1.5)

TDS=(pS=3, eS=1)

0

1
Budget

JA released
(aperiodic, e = 1.75)

Budget replenished

Budget exhausted

Budget replenished

T2=(p=6.5, e=0.5)



Deferrable Server: Scheduling in RM (1)

13

• Maximum utilisation test fails
• Utilisation varies depending on arrival times of jobs executed by server

• Use time demand analysis based on critical instants to determine if the 
system can be scheduled

• Finding the critical instants:
• Assume a fixed-priority system T in which Di ≤ pi ∀ i scheduled with a 

deferrable server (pS, eS) that has the highest priority among all tasks 

• A critical instant of every periodic tasks Ti occurs at a time t0 when all of 
the following are true:

• One of its jobs Ji,c is released at t0

• A job in every higher-priority periodic task is released at t0

• The budget of the server is eS at t0, one or more aperiodic jobs are released at t0, and they 
keep the server backlogged hereafter

• The next replenishment time of the server is t0 + eS



Deferrable Server: Scheduling in RM (2)

• The definition of critical instant is identical to that 
for the periodic tasks without the deferrable server 
+ the worst-case requirements for the server

• The time-demand function is:

• To determine whether the task Ti is can be schedule, we simply have to 
check whether wi(t) ≤ t for some t ≤ Di

• Remember, this is a sufficient condition, not necessary – i.e., if this 
condition is not true, the schedule might still be correct

14

Execution time
of job Ji

Execution time of higher priority
jobs started during this interval

Execution time of
deferrable server

wi(t) = ei +
i�1X

k=1

⇠
t

pk

⇡
ek + es +

⇠
t� es
ps

⇡
es



Deferrable Server: Scheduling in RM (3)

• In general, no maximum utilisation test for a fixed-
priority system with a deferrable server
• One special case: a system of n independent, preemptable periodic tasks, 

whose periods satisfy ps < p1 < p2 < … < pn < 2ps and pn > ps + es, where the 
relative deadlines equal their respective periods, can be scheduled rate-
monotonically with a deferrable server provided U < URM/DS(n) where:

15

URM/DS(n) = (n� 1)

$✓
us + 2

us + 1

◆ 1
(n�1)

� 1

%



Deferrable Server: Scheduling in EDF

• It is easier to reason about the schedulability of a 
deadline-driven system with a deferrable server
• The deadline of a deferrable server is its next replenishment time

• A periodic task Ti in a system of N independent, preemptable, periodic 
tasks is schedulable with a deferrable server with period pS, execution 
budget eS and utilization uS, according to the EDF algorithm if:

• Must be calculated for each task in the system, since Di included

• Example: tasks T1=(3, 0.6), T2=(5.0, 0.5), T3=(7, 1.4) scheduled with a 
deferrable server ps=4, es=0.8

• The left-hand side of the above inequality is 0.913, 0.828 and 0.792 
respectively; hence the three tasks are schedulable

16

NX

k=1

ek
min(Dk, pk)

+ us

✓
1 +

ps � es
Di

◆
 1



Summary

• Aperiodic and sporadic tasks

• System model – acceptance tests

• Approaches to scheduling aperiodic tasks
• Background execution

• Polling server – simple; inefficient

• Deferrable server – more efficient; too complex to prove correctness for 
RM; effective for EDF systems

17


