
Real-time Scheduling of Periodic Tasks (2)

Advanced Operating Systems
Lecture 3

Lecture Outline

• The rate monotonic algorithm (cont’d)
• …

• Maximum utilisation test

• The deadline monotonic algorithm

• The earliest deadline first algorithm
• Definition

• Optimality

• Maximum utilisation test

• The least slack time algorithm

• Discussion

2

Rate Monotonic: Other Scheduling Tests

3

• Exhaustive simulation and time-demand analysis
complex and error prone

• Simple scheduling tests derived for some cases:
• Simply periodic systems

• Maximum utilisation test

Simply Periodic Systems

• In a simply periodic system, the periods of all tasks
are integer multiples of each other
• pk = n⋅pi for all i, k such that pi < pk where n is a positive integer

• True for many real-world systems, since easy to engineer around
multiples of a single run loop

4

Simply Periodic Rate Monotonic Tasks

• Rate monotonic optimal for simply periodic systems
• A set of simply periodic, independent, preemptable tasks with Di ≥ pi can

be scheduled on a single processor using RM provided U ≤ 1

• Proof follows from time-demand analysis:
• A simply periodic system, assume tasks in phase

• Worst case execution time occurs when tasks in phase

• Ti misses deadline at time t where t is an integer multiple of pi

• Again, worst case ⇒ Di = pi

• Simply periodic ⇒ t integer multiple of periods of all higher priority tasks

• Total time required to complete jobs with deadline ≤ t is

• Only fails when Ui > 1

5

iX

k=1

ek
pk

t = t · Ui

Maximum Utilisation Tests

• Simply periodic systems have a simple maximum
utilisation test

• Possible to generalise the result to general rate
monotonic systems
• Derive a maximum utilisation, such that it is guaranteed a feasible

schedule exists provided the maximum is not exceeded

6

RM Maximum Utilisation Test: Di = pi

7

• A system of n independent preemptable periodic
tasks with Di = pi can be feasibly scheduled on one
processor using rate monotonic if U ≤ n⋅(21/n – 1)

• URM(n) = n⋅(21/n – 1)

• For large n → ln 2
(i.e., n → 0.69314718056…)

• U ≤ URM(n) is a sufficient, but not necessary, condition – i.e., a feasible
rate monotonic schedule is guaranteed to exist if U ≤ URM(n), but might
still be possible if U > URM(n)

0.7

0.6

0.8

0.9

2 4 6 8 10 12 14 16 18
n

URM(n)

See Jane W. S. Liu, “Real-time
systems”, Section 6.7 for proof

RM Maximum Utilisation Test: Di = υ⋅pi

• Maximum utilisation varies if relative deadline and
period differ

• For n tasks, where the relative deadline Dk = υ⋅pk it
can be shown that:

(you are not expected to remember this formula – but should understand how
the utilisation changes in general terms)

8

URM (n, v) =

8
<

:

v for 0  v  0.5
n((2v)

1
n � 1) + 1� v for 0.5  v  1

v(n� 1)[(

v+1
v)

1
n�1 � 1] for v = 2, 3, . . .

RM Maximum Utilisation Test: Di = υ⋅pi

9

n υ = 4.0 υ = 3.0 υ = 2.0 υ = 1.0 υ = 0.9 υ = 0.8 υ = 0.7 υ = 0.6 υ = 0.5
2 0.944 0.928 0.898 0.828 0.783 0.729 0.666 0.590 0.500
3 0.926 0.906 0.868 0.779 0.749 0.708 0.656 0.588 0.500
4 0.917 0.894 0.853 0.756 0.733 0.698 0.651 0.586 0.500
5 0.912 0.888 0.844 0.743 0.723 0.692 0.648 0.585 0.500
6 0.909 0.884 0.838 0.734 0.717 0.688 0.646 0.585 0.500
7 0.906 0.881 0.834 0.728 0.713 0.686 0.644 0.584 0.500
8 0.905 0.878 0.831 0.724 0.709 0.684 0.643 0.584 0.500
9 0.903 0.876 0.829 0.720 0.707 0.682 0.642 0.584 0.500
∞ 0.892 0.863 0.810 0.693 0.687 0.670 0.636 0.582 0.500

Di = pi

Di > pi ⇒ Maximum utilisation increases Di < pi ⇒ Maximum utilisation decreases

The Deadline Monotonic Algorithm

• Assign priorities to jobs in each task based on the
relative deadline of that task
• Shorter relative deadline → higher the priority

• If relative deadline equals period, schedule is identical to rate monotonic

• When the relative deadlines and periods differ: deadline monotonic can
sometimes produce a feasible schedule in cases where rate monotonic
cannot; rate monotonic always fails when deadline monotonic fails

• Hence deadline monotonic preferred if deadline ≠ period

• Not widely used – periodic systems typically have
relative deadline equal to their period

10

The Earliest Deadline First Algorithm

• Assign priority to jobs based on deadline: earlier
deadline = higher priority

• Rationale: do the most urgent thing first

• Dynamic priority algorithm: priority of a job depends
on relative deadlines of all active tasks
• May change over time as other jobs complete or are released

• May differ from other jobs in the task

11

Earliest Deadline First: Example

12

Time Ready to run Running
0 J2,1 J1,1

1 J2,1

2 J2,1 J1,2

3 J2,1

4 J1,3 J2,1

4.5 J1,3

5 J2,2 J1,3

5.5 J2,2

6 J2,2 J1,4

7 J2,2

Time Ready to run Running
8 J2,2 J1,5

9 J2,2

10 J2,3 J1,6

… … …

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2J2,1J1,1

J1,1 J1,2 J1,3 J1,4 J1,5

J2,2J2,1 J2,3

J1,6

R
el

ea
se

d

0 1 2 3 4 5 6 7 8 9 10

T1 = (2, 1)
T2 = (5, 2.5)

Earliest Deadline First is Optimal

13

• EDF is optimal, provided the system has a single
processor, preemption is allowed, and jobs don’t
contend for resources
• That is, it will find a feasible schedule if one exists, not that it will always

be able to schedule a set of tasks

• EDF is not optimal with multiple processors, or if
preemption is not allowed

• Any feasible schedule can be transformed into an
EDF schedule
• If Ji is scheduled to run before Jk, but Ji’s deadline is later than Jk’s either:

• The release time of Jk is after the Ji completes ⇒ they’re already in EDF order

• The release time of Jk is before the end of the interval in which Ji executes:

• Swap Ji and Jk (this is always possible, since Ji’s deadline is later than Jk’s)

• Move any jobs following idle periods forward into the idle period

• The result is an EDF schedule

• So, if EDF fails to produce a feasible schedule, no such schedule exists
• If a feasible schedule existed it could be transformed into an EDF schedule, contradicting the

statement that EDF failed to produce a feasible schedule [proof for LST is similar]

Earliest Deadline First is Optimal: Proof

14

Ji Jk

dk dirk

JiJkJk

Jk JiJk

Maximum Utilisation Test: Di ≥ pi

• Theorem:
• A system of independent preemptable periodic tasks with Di ≥ pi can be

feasibly scheduled on one processor using EDF if and only if U ≤ 1

• Note: result is independent of φi

• Proof follows from optimality of the system

15

Maximum Utilisation Test: Di < pi

• Test fails if Di < pi for some i
• E.g. T1 = (2, 0.8), T2=(5, 2.3, 3)

• However, there is an alternative test:
• The density of the task, Ti, is δi = ei / min(Di, pi)

• The density of the system is Δ = δ1 + δ2 + … + δn

• Theorem: A system T of independent, preemptable periodic tasks can be
feasibly scheduled on one processor using EDT if Δ ≤ 1.

• Note:
• This is a sufficient condition, but not a necessary condition – i.e. a system

is guaranteed to be feasible if Δ ≤ 1, but might still be feasible if Δ > 1
(would have to run the exhaustive simulation to prove)

16

J2,2J1,1 J1,2 J1,3 J1,4

0 1 2 3 4 5 6 7

J2,1 J2,1 J2,2

J2,1 is preempted and misses deadline

The Least Slack Time Algorithm

• Least Slack Time first (LST)
• A job Ji has deadline di, execution time ei, and was released at time ri

• At time t < di: remaining execution time trem = ei − (t − ri)

• Assign priority based on least slack time, tslack = di − t − trem

• Two variants:
• Strict LST – scheduling decision made whenever a queued job’s slack time becomes smaller

than the executing job’s slack time – high overhead, not used;

• Non-strict LST – scheduling decisions made only when jobs release or complete

• More complex, requires knowledge of execution times and deadlines

• Infrequently used, since has similar behaviour to EDF, but more complex

17

Discussion

• EDF is optimal, and simpler to prove correct – why
use RM?
• RM more widely supported since easier to retro-fit to standard fixed

priority scheduler, and support included in POSIX real-time APIs

• RM more predictable: worst case execution time of a task occurs with
worst case execution time of the component jobs – not always true for
EDF, where speeding up one job can increase overall execution time
(known as a “scheduling anomaly”)

18

Summary

• The rate monotonic algorithm
• Simply periodic systems

• Maximum utilisation test

• The earliest deadline first algorithm
• Optimality

• Maximum utilisation tests

• Other algorithms
• Deadline monotonic

• Least slack time

19

