
Real-time Scheduling of Periodic Tasks (1)

Advanced Operating Systems
Lecture 2



Lecture Outline

• Scheduling periodic tasks

• The rate monotonic algorithm
• Definition

• Non-optimality

• Time-demand analysis

• ...
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Scheduling Periodic Tasks

• Simplest real-time system: a set of n periodic tasks 
characterised by Ti = (φi, pi, ei, Di) for i = 1, 2, …, n
• Simplified model: Ti = (pi, ei) when φi = 0 and Di = pi

• Tasks are independent, with no resource constraints

• Assume a single processor system

• There are no aperiodic or sporadic tasks

• Must schedule system to ensure all deadlines met
• What type of job scheduler is used?

• What scheduling algorithm is used?

• How to prove correctness of the schedule?
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Job Schedulers

• Clock driven scheduler
• Decisions on what job execute made at specific time instants
• Usually regularly spaced, implemented using a periodic timer interrupt: scheduler awakes after 

each interrupt, schedules the job to execute for the next period, then sleeps until the next 
interrupt

• E.g. the furnace control example, with an interrupt every 100ms

• Primarily used for static systems, with schedule computed at design time 
and encoded as a fixed table

• Behaviour depends on algorithm used to assign jobs to time slots

• Priority driven scheduler
• Scheduler chooses what to run at job release or completion time, based 

on some notion of job priority; will always run a job, if one available

• Flexible, as scheduling decisions made at runtime, but hard to validate

• Behaviour depends on algorithm used to assign priorities to jobs
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Scheduling Algorithms

• Wide range of scheduling algorithms used:
• Rate monotonic (RM)

• Deadline monotonic (DM)

• Earliest deadline first (EDF)

• Least slack time (LST)

• Trade-off optimality, stability, and ease of validation
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Proving Correctness of a Schedule

6

• A set of periodic tasks repeats after hyper-period, H = lcm(pi) for i = 1, 2, …, n

• If the system can be scheduled for one hyper-period, it can be scheduled for 
all, given no aperiodic or sporadic tasks, and no resource constraints

• Can demonstrate correctness of schedule by exhaustive simulation, or using 
a mathematical proof of correctness
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Modelling Periodic Tasks 

•! The hyper-period of a set of periodic tasks is the least common 

multiple of their periods:  H = lcm(pi) for i = 1, 2, …, n 

–! Time after which the pattern of job release/execution times starts to repeat, 

limiting analysis needed 

•! Example: 

–! T1 : p1 = 3, e1  = 1 

–! T2 : p2 = 5, e2 = 2 

H = lcm(3, 5) = 15 

Time 
0 5 10 15 20 25 30 

J1,1 J1,2 J1,3 J1,4 J1,5 

J2,1 J2,2 J2,2 J2,3 



The Rate Monotonic Algorithm

• Assign priorities to jobs in each task based on the 
period of that task
• Shorter period → higher priority; rate (of job releases) is the inverse of the 

period, so jobs with higher rate have higher priority

• Rationale: schedule jobs with most deadlines first, fit others around them

• All jobs in a task have the same priority – fixed priority algorithm

• For example, consider a system of 3 tasks:
• T1 = (4, 1)  ⇒ rate = 1/4

T2 = (5, 2)  ⇒ rate = 1/5
T3 = (20, 5)  ⇒ rate = 1/20

• Relative priorities: T1 > T2 > T3
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Rate Monotonic: Example
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Time Ready to run Running
0 J2,1  J3,1 J1,1

1 J3,1 J2,1

2 J3,1 J2,1

3 J3,1

4 J3,1 J1,2

5 J3,1 J2,2

6 J3,1 J2,2

7 J3,1

8 J3,1 J1,3

9 J3,1

Time Ready to run Running
10 J3,1 J2,3

11 J3,1 J2,3

12 J3,1 J1,4

13 J3,1

14 J3,1

15 J2,4

16 J2,4 J1,5

17 J2,4

18
19All tasks meet deadlines: proof by exhaustive simulation

Low priority tasks (e.g., T3) frequently preempted

J1,5 J2,4J1,1 J1,2 J1,3 J1,4 J2,4J2,1 J3,1 J2,3J2,2 J3,1 J3,1 J3,1

J1,1 J1,2 J1,3 J1,4 J1,5

J2,2J2,1 J2,3 J2,4
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T1 = (4, 1) 
T2 = (5, 2)
T3 = (20, 5)



Rate Monotonic is Not Optimal

9

• Proof by counter-example:
• A system of two independent periodic tasks, T1 = (2, 1) and T2 = (5, 2.5), 

scheduled preemptively on a single processor: 

• H = 10, U = 1.0 → there is no slack time

• Rate monotonic fails to meet deadlines, EDF (discussed later) succeeds

0 2 4 6 8 10

J1,1 J2,1 J1,2 J2,1 J1,3 J2,1 J2,2 J1,4 J1,5J2,2 J2,2RM

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2J2,1EDF J1,1

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2
Deadlines

J2,1 misses deadline



Time Demand Analysis
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• Exhaustive simulation error prone and tedious – an 
alternative is time demand analysis
• Fixed priority algorithms predictable; do not suffer scheduling anomalies
• The worst case execution time of the system occurs with the worst case execution time of the 

jobs, unlike dynamic priority algorithms which can exhibit anomalous behaviour 

• Basis of general proof that system can be scheduled to meet all deadlines
• Find critical instants when system is most loaded, and has its worst response time

• Use time demand analysis to check if system can be scheduled at those instants

• In absence of scheduling anomalies, system will meet all deadlines if it can be scheduled at 
critical instants



Finding Critical Instants

• Critical instant of a job is the worst-case release 
time for that job, taking into account all jobs that 
have higher priority
• i.e., job is released at the same instant as all jobs with higher priority are 

released, and must wait for all those jobs to complete before it executes

• Response time, wi,k, of a job released at a critical instant is the maximum 
possible response time of that job

• Definition of a critical instant:
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All jobs meet deadlines, but this is when 
job with the slowest response is started

If some jobs don’t meet deadlines, 
this is one of those jobs

if wi,k ≤ Di,k for every Ji,k in Ti then

The job released at that instant has maximum response 
time of all jobs in Ti and Wi = wi,k

else if ∃ Ji,k : wi,k > Di,k then

The job released at that instant has response time > D

where wi,k is the response time of the job



0 1 2 3 4 5 6 7 8 9 10 11 12

T1 = (2.0, 0.6)

T2 = (2.5, 0.2)

T3 = (3.0, 1.2)

Finding Critical Instants: Example
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• 3 tasks scheduled using the rate-monotonic algorithm

• Response times of jobs in T2 are: r2,1 = 0.8, r2,3 = 0.3, r2,3 = 0.2, r2,4 = 0.3, r2,5 = 0.8, …

• Therefore critical instants of T2 are t = 0 and t = 10



Time-demand Analysis

• Simulate system behaviour at the critical instants
• For each job Ji,c released at a critical instant, if Ji,c and all higher priority 

tasks complete executing before their relative deadlines the system can 
be scheduled

• Compute the total demand for processor time by a job released at a 
critical instant of a task, and by all the higher-priority tasks, as a function 
of time from the critical instant; check if this demand can be met before 
the deadline of the job:
• Consider one task, Ti, at a time, starting highest priority and working down to lowest priority

• Focus on a job, Ji, in Ti, where the release time, t0, of that job is a critical instant of Ti

• At time t0 + t for t ≥ 0, the processor time demand wi(t) for 
this job and all higher-priority jobs released in [t0, t] is:
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Execution time of job Ji Execution time of higher priority 
jobs started during this interval

wi(t) is the time-demand function

wi(t) = ei +
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Using the Time-demand Function

• Compare time-demand function, wi(t), and available 
time, t:
• If wi(t) ≤ t at some t ≤ Di, the job, Ji, meets its deadline, t0 + Di

• If wi(t) > t for all 0 < t ≤ Di then the task probably cannot complete by its 
deadline; and the system likely cannot be scheduled using a fixed priority 
algorithm
• Note that this is a sufficient condition, but not a necessary condition. Simulation may show that 

the critical instant never occurs in practice, so the system could be feasible…

• Use this method to check that all tasks are can be 
scheduled if released at their critical instants; if so 
conclude the entire system can be scheduled
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Time-demand Analysis: Example
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J3,1 starts with a time
demand of 5 units: 2
for itself, 2 for J2,1, 
1 for J1,1
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Deadline for J1,1

Deadline for J2,1

J3,1 deadline

w3(t)

The time-demand, wi(t), is a 
staircase function with steps 
at multiples of higher priority 
task periods

Plot the time-demand versus 
available time graphically, to 
get intuition into approach

Example: a rate monotonic system
T1 = (3, 1), T2 = (5, 2), T3 = (10, 2)
U  = 0.933

Time-demand functions w1(t), w2(t) 
and w3(t) are below t at deadlines, 
so the system can be scheduled – 
simulate the system to check this!



Time-demand Analysis

• Works for any fixed-priority scheduling algorithm 
with periodic tasks where Di < pi for all tasks

• Only a sufficient test:
• System can be scheduled if time demand less than time available before 

critical instants

• But, might be possible to schedule if time demand exceeds available time 
– further validation (i.e., exhaustive simulation) needed in this case
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Summary

• The real-time scheduling problem for periodic tasks

• The rate monotonic algorithm
• Simple, fixed-priority, algorithm

• Non-optimal

• Proofs of correctness of a schedule using exhaustive simulation and time-
demand analysis

• Next lecture: 
• Alternative proofs of correctness for rate monotonic schedules

• Other algorithms: deadline monotonic, earliest deadline first, least slack 
time 
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