
Real-time Scheduling of Periodic Tasks (1)

Advanced Operating Systems
Lecture 2

Lecture Outline

• Scheduling periodic tasks

• The rate monotonic algorithm
• Definition

• Non-optimality

• Time-demand analysis

• ...

2

Scheduling Periodic Tasks

• Simplest real-time system: a set of n periodic tasks
characterised by Ti = (φi, pi, ei, Di) for i = 1, 2, …, n
• Simplified model: Ti = (pi, ei) when φi = 0 and Di = pi

• Tasks are independent, with no resource constraints

• Assume a single processor system

• There are no aperiodic or sporadic tasks

• Must schedule system to ensure all deadlines met
• What type of job scheduler is used?

• What scheduling algorithm is used?

• How to prove correctness of the schedule?

3

Job Schedulers

• Clock driven scheduler
• Decisions on what job execute made at specific time instants
• Usually regularly spaced, implemented using a periodic timer interrupt: scheduler awakes after

each interrupt, schedules the job to execute for the next period, then sleeps until the next
interrupt

• E.g. the furnace control example, with an interrupt every 100ms

• Primarily used for static systems, with schedule computed at design time
and encoded as a fixed table

• Behaviour depends on algorithm used to assign jobs to time slots

• Priority driven scheduler
• Scheduler chooses what to run at job release or completion time, based

on some notion of job priority; will always run a job, if one available

• Flexible, as scheduling decisions made at runtime, but hard to validate

• Behaviour depends on algorithm used to assign priorities to jobs

4

Scheduling Algorithms

• Wide range of scheduling algorithms used:
• Rate monotonic (RM)

• Deadline monotonic (DM)

• Earliest deadline first (EDF)

• Least slack time (LST)

• Trade-off optimality, stability, and ease of validation

5

Proving Correctness of a Schedule

6

• A set of periodic tasks repeats after hyper-period, H = lcm(pi) for i = 1, 2, …, n

• If the system can be scheduled for one hyper-period, it can be scheduled for
all, given no aperiodic or sporadic tasks, and no resource constraints

• Can demonstrate correctness of schedule by exhaustive simulation, or using
a mathematical proof of correctness

C
o

p
y

ri
g

h
t

©
 2

0
0

6
 U

n
iv

er
si

ty
 o

f
G

la
sg

o
w

A
ll

 r
ig

h
ts

 r
es

er
v

ed
.

Modelling Periodic Tasks

•! The hyper-period of a set of periodic tasks is the least common

multiple of their periods: H = lcm(pi) for i = 1, 2, …, n

–! Time after which the pattern of job release/execution times starts to repeat,

limiting analysis needed

•! Example:

–! T1 : p1 = 3, e1 = 1

–! T2 : p2 = 5, e2 = 2

H = lcm(3, 5) = 15

Time
0 5 10 15 20 25 30

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2 J2,2 J2,3

The Rate Monotonic Algorithm

• Assign priorities to jobs in each task based on the
period of that task
• Shorter period → higher priority; rate (of job releases) is the inverse of the

period, so jobs with higher rate have higher priority

• Rationale: schedule jobs with most deadlines first, fit others around them

• All jobs in a task have the same priority – fixed priority algorithm

• For example, consider a system of 3 tasks:
• T1 = (4, 1) ⇒ rate = 1/4

T2 = (5, 2) ⇒ rate = 1/5
T3 = (20, 5) ⇒ rate = 1/20

• Relative priorities: T1 > T2 > T3

7

Rate Monotonic: Example

8

Time Ready to run Running
0 J2,1 J3,1 J1,1

1 J3,1 J2,1

2 J3,1 J2,1

3 J3,1

4 J3,1 J1,2

5 J3,1 J2,2

6 J3,1 J2,2

7 J3,1

8 J3,1 J1,3

9 J3,1

Time Ready to run Running
10 J3,1 J2,3

11 J3,1 J2,3

12 J3,1 J1,4

13 J3,1

14 J3,1

15 J2,4

16 J2,4 J1,5

17 J2,4

18
19All tasks meet deadlines: proof by exhaustive simulation

Low priority tasks (e.g., T3) frequently preempted

J1,5 J2,4J1,1 J1,2 J1,3 J1,4 J2,4J2,1 J3,1 J2,3J2,2 J3,1 J3,1 J3,1

J1,1 J1,2 J1,3 J1,4 J1,5

J2,2J2,1 J2,3 J2,4

J3,1R
el

ea
se

d

0 4 8 12 16 20

T1 = (4, 1)
T2 = (5, 2)
T3 = (20, 5)

Rate Monotonic is Not Optimal

9

• Proof by counter-example:
• A system of two independent periodic tasks, T1 = (2, 1) and T2 = (5, 2.5),

scheduled preemptively on a single processor:

• H = 10, U = 1.0 → there is no slack time

• Rate monotonic fails to meet deadlines, EDF (discussed later) succeeds

0 2 4 6 8 10

J1,1 J2,1 J1,2 J2,1 J1,3 J2,1 J2,2 J1,4 J1,5J2,2 J2,2RM

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2J2,1EDF J1,1

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2
Deadlines

J2,1 misses deadline

Time Demand Analysis

10

• Exhaustive simulation error prone and tedious – an
alternative is time demand analysis
• Fixed priority algorithms predictable; do not suffer scheduling anomalies
• The worst case execution time of the system occurs with the worst case execution time of the

jobs, unlike dynamic priority algorithms which can exhibit anomalous behaviour

• Basis of general proof that system can be scheduled to meet all deadlines
• Find critical instants when system is most loaded, and has its worst response time

• Use time demand analysis to check if system can be scheduled at those instants

• In absence of scheduling anomalies, system will meet all deadlines if it can be scheduled at
critical instants

Finding Critical Instants

• Critical instant of a job is the worst-case release
time for that job, taking into account all jobs that
have higher priority
• i.e., job is released at the same instant as all jobs with higher priority are

released, and must wait for all those jobs to complete before it executes

• Response time, wi,k, of a job released at a critical instant is the maximum
possible response time of that job

• Definition of a critical instant:

11

All jobs meet deadlines, but this is when
job with the slowest response is started

If some jobs don’t meet deadlines,
this is one of those jobs

if wi,k ≤ Di,k for every Ji,k in Ti then

The job released at that instant has maximum response
time of all jobs in Ti and Wi = wi,k

else if ∃ Ji,k : wi,k > Di,k then

The job released at that instant has response time > D

where wi,k is the response time of the job

0 1 2 3 4 5 6 7 8 9 10 11 12

T1 = (2.0, 0.6)

T2 = (2.5, 0.2)

T3 = (3.0, 1.2)

Finding Critical Instants: Example

12

• 3 tasks scheduled using the rate-monotonic algorithm

• Response times of jobs in T2 are: r2,1 = 0.8, r2,3 = 0.3, r2,3 = 0.2, r2,4 = 0.3, r2,5 = 0.8, …

• Therefore critical instants of T2 are t = 0 and t = 10

Time-demand Analysis

• Simulate system behaviour at the critical instants
• For each job Ji,c released at a critical instant, if Ji,c and all higher priority

tasks complete executing before their relative deadlines the system can
be scheduled

• Compute the total demand for processor time by a job released at a
critical instant of a task, and by all the higher-priority tasks, as a function
of time from the critical instant; check if this demand can be met before
the deadline of the job:
• Consider one task, Ti, at a time, starting highest priority and working down to lowest priority

• Focus on a job, Ji, in Ti, where the release time, t0, of that job is a critical instant of Ti

• At time t0 + t for t ≥ 0, the processor time demand wi(t) for
this job and all higher-priority jobs released in [t0, t] is:

13

Execution time of job Ji Execution time of higher priority
jobs started during this interval

wi(t) is the time-demand function

wi(t) = ei +
i�1X

k=1

⇠
t

pk

⇡
ek

Using the Time-demand Function

• Compare time-demand function, wi(t), and available
time, t:
• If wi(t) ≤ t at some t ≤ Di, the job, Ji, meets its deadline, t0 + Di

• If wi(t) > t for all 0 < t ≤ Di then the task probably cannot complete by its
deadline; and the system likely cannot be scheduled using a fixed priority
algorithm
• Note that this is a sufficient condition, but not a necessary condition. Simulation may show that

the critical instant never occurs in practice, so the system could be feasible…

• Use this method to check that all tasks are can be
scheduled if released at their critical instants; if so
conclude the entire system can be scheduled

14

Time-demand Analysis: Example

15

J3,1 starts with a time
demand of 5 units: 2
for itself, 2 for J2,1,
1 for J1,1

0 2 4 6 8 10
0

2

4

6

8

10

Time, t

Ti
m

e-
de

m
an

d
fu

nc
tio

n,
 w

i(t
)

w1(t)

w2(t)

t

Deadline for J1,1

Deadline for J2,1

J3,1 deadline

w3(t)

The time-demand, wi(t), is a
staircase function with steps
at multiples of higher priority
task periods

Plot the time-demand versus
available time graphically, to
get intuition into approach

Example: a rate monotonic system
T1 = (3, 1), T2 = (5, 2), T3 = (10, 2)
U = 0.933

Time-demand functions w1(t), w2(t)
and w3(t) are below t at deadlines,
so the system can be scheduled –
simulate the system to check this!

Time-demand Analysis

• Works for any fixed-priority scheduling algorithm
with periodic tasks where Di < pi for all tasks

• Only a sufficient test:
• System can be scheduled if time demand less than time available before

critical instants

• But, might be possible to schedule if time demand exceeds available time
– further validation (i.e., exhaustive simulation) needed in this case

16

Summary

• The real-time scheduling problem for periodic tasks

• The rate monotonic algorithm
• Simple, fixed-priority, algorithm

• Non-optimal

• Proofs of correctness of a schedule using exhaustive simulation and time-
demand analysis

• Next lecture:
• Alternative proofs of correctness for rate monotonic schedules

• Other algorithms: deadline monotonic, earliest deadline first, least slack
time

17

