P Unaversity | School of
of Glasgow | Computing Science

Real-time Scheduling of Periodic Tasks (1)

Advanced Operating Systems
Lecture 2



Lecture Outline

e Scheduling periodic tasks

® [he rate monotonic algorithm

Definition

o

e Non-optimality

e Time-demand analysis
o



Scheduling Periodic Tasks

o Simplest real-time system: a set of »n periodic tasks
characterised by T: = (¢;, pi, e;, D) fori=1,2, ..., n
e Simplified model: 7; = (p;, e;)) when ¢, =0 and D; = p;
e TJasks are independent, with no resource constraints

e Assume a single processor system

® There are no aperiodic or sporadic tasks

® Must schedule system to ensure all deadlines met

e \What type of job scheduler is used?
e \What scheduling algorithm is used?

e How to prove correctness of the schedule?



Job Schedulers

® (Clock driven scheduler

e Decisions on what job execute made at specific time instants

° Usually regularly spaced, implemented using a periodic timer interrupt: scheduler awakes after
each interrupt, schedules the job to execute for the next period, then sleeps until the next
interrupt

° E.g. the furnace control example, with an interrupt every 100ms

® Primarily used for static systems, with schedule computed at design time
and encoded as a fixed table

e Behaviour depends on algorithm used to assign jobs to time slots

® Priority driven scheduler

e Scheduler chooses what to run at job release or completion time, based
on some notion of job priority; will always run a job, if one available

e Flexible, as scheduling decisions made at runtime, but hard to validate

e Behaviour depends on algorithm used to assign priorities to jobs



Scheduling Algorithms

e \Vide range of scheduling algorithms used:

Rate monotonic (RM)

Earliest deadline first (EDF)

o

e Deadline monotonic (DM)
o

® | eastslack time (LST)

e Trade-off optimality, stability, and ease of validation



Proving Correctness of a Schedule

e A set of periodic tasks repeats after hyper-period, H=1lcm(p;) fori=1,2, ..., n

e |f the system can be scheduled for one hyper-period, it can be scheduled for
all, given no aperiodic or sporadic tasks, and no resource constraints

e (Can demonstrate correctness of schedule by exhaustive simulation, or using
a mathematical proof of correctness

— T,:p,=5,e,=2 D

:H— lem(3, 5) =15




The Rate Monotonic Algorithm

® Assign priorities to jobs in each task based on the
period of that task

e Shorter period — higher priority; rate (of job releases) is the inverse of the
period, so jobs with higher rate have higher priority

e Rationale: schedule jobs with most deadlines first, fit others around them

e Alljobs in a task have the same priority — fixed priority algorithm

® [or example, consider a system of 3 tasks:

o T1=(4,1) = rate = 1/4
> = (5, 2) = rate = 1/5
13 = (20, 5) = rate = 1/20

e Relative priorities: 71 > T> > T3



Rate Monotonic: Example

Released

Time Ready to run Running Time Ready to run Running
O J2,1 J3,1 Jl,l 10 J3,1 J2,3
1 J3,1 J2,1 11 J3,1 J2,3
2 J3.1 o1 12 J3.1 Ji4
3 J31 13 J31
4 J31 Ji2 14 J31
3 31 Jrs 15 Jr4
6 J3,1 J2,2 16 J2,4 Jl,S
7 J31 17 Jr4
8 J31 Ji3 18
9 J31 | All tasks meet deadlines: proof by exhaustive simulation
Low priority tasks (e.g., 75) frequently preempted
Jl,l J1,2 J1,3 Jl,4 JI,S
J2,1 . J2,2 J2,3 . J2,4
% T, = (4 1)
T,=(5,2)
J1,1 J2,1 J3,1 Ji2 Jz,z J3,1 J1,3 J3,1 J2,3 Jial I3 J2,4 Jis J2,4 Ti_ 55
0 4 8 12 16 20



Rate Monotonic is Not Optimal

® Proof by counter-example:

e A system of two independent periodic tasks, 771 = (2, 1) and 7> = (5, 2.5),
scheduled preemptively on a single processor:

o H=10,U=1.0 - thereis no slack time

e Rate monotonic fails to meet deadlines, EDF (discussed later) succeeds

J2.1 misses deadline

Deadlines lf lf lf 1? 1,5
X 22




Time Demand Analysis

e Exhaustive simulation error prone and tedious — an
alternative is time demand analysis

e Fixed priority algorithms predictable; do not suffer scheduling anomalies

° The worst case execution time of the system occurs with the worst case execution time of the
jobs, unlike dynamic priority algorithms which can exhibit anomalous behaviour

e Basis of general proof that system can be scheduled to meet all deadlines

° Find critical instants when system is most loaded, and has its worst response time
° Use time demand analysis to check if system can be scheduled at those instants

° In absence of scheduling anomalies, system will meet all deadlines if it can be scheduled at
critical instants

10



Finding Critical Instants

e C(ritical instant of a job is the worst-case release
time for that job, taking into account all jobs that
have higher priority

® |.e,jobisreleased at the same instant as all jobs with higher priority are
released, and must wait for all those jobs to complete before it executes

e Response time, wik, of a job released at a critical instant is the maximum
possible response time of that job

e Definition of a critical instant:

fwix<Dyforevery uin Tithen
. The job released at that instant has maximum response All jobs meet deadlines, but this is when
time of all jobs in 7; and W = w;x . job with the slowest response is started

else if 3 Jix : wik > Dix then g
: . If some jobs don’'t meet deadlines,

The job released at that instant has response time >D | s is one of those jobs

Ewhere wik IS the response time of the job

11



Finding Critical Instants: Example

» 3 tasks scheduled using the rate-monotonic algorithm

 Response times of jobs in 7, are: r,,=0.8,r,,=0.3,r,;,=02,7,,=0.3,7,5=0.8, ...

 Therefore critical instants of 7, are t =0 and = 10

12



Time-demand Analysis

¢ Simulate system behaviour at the critical instants

e For each job J;. released at a critical instant, if J;. and all higher priority
tasks complete executing before their relative deadlines the system can

be scheduled

e Compute the total demand for processor time by a job released at a
critical instant of a task, and by all the higher-priority tasks, as a function
of time from the critical instant; check if this demand can be met before

the deadline of the job:
° Consider one task, T;, at a time, starting highest priority and working down to lowest priority
° Focus on a job, J;, in T;, where the release time, ¢y, of that job is a critical instant of T;

° At time 7 + ¢ for > 0, the processor time demand w;(¢) for 1—1 ¢
this job and all higher-priority jobs released in [t, ] is: w; () = e; + Z {—_‘ €k
Pk
k=

w,(?) is the time-demand function / ;i J

Execution time of job J, Execution time of higher priority
jobs started during this interval

13



Using the Time-demand Function

e Compare time-demand function, wi(¢), and available
time, ¢:

o |[fwi(f)<tatsome <D, the job, J;, meets its deadline, # + D;

o If wi(r)>tforall 0 <z<D;then the task probably cannot complete by its
deadline; and the system likely cannot be scheduled using a fixed priority
algorithm

° Note that this is a sufficient condition, but not a necessary condition. Simulation may show that
the critical instant never occurs in practice, so the system could be feasible...

® Use this method to check that all tasks are can be
scheduled if released at their critical instants; If so
conclude the entire system can be scheduled

14



Time-demand Analysis: Example

The time-demand, wi(?), is a
staircase function with steps
at multiples of higher priority
task periods

Plot the time-demand versus
available time graphically, to
get intuition into approach

Example: a rate monotonic system
7,=(3,1), 7,=(5,2), 7= (10, 2)
U =0.933

Time-demand functions w,(z), w(¢)
and wy(¢) are below ¢ at deadlines,

so the system can be scheduled —
simulate the system to check this!

Time-demand function, w(¢)

10

(@)

AN

N

A demand of 5 units: 2

J3 4 starts with a time

for itself, 2 for J, 4,

wo(?)
1 for J; 4 ’

J3.1 deadline

Deadline for J, ,

Deadline for J, ;

. lime, t

15



Time-demand Analysis

e \Works for any fixed-priority scheduling algorithm
with periodic tasks where D; < p; for all tasks

e Only a sufficient test:

System can be scheduled if time demand less than time available before
critical instants

But, might be possible to schedule if time demand exceeds available time
— further validation (i.e., exhaustive simulation) needed in this case

16



Summary

® The real-time scheduling problem for periodic tasks

® [he rate monotonic algorithm
e Simple, fixed-priority, algorithm
e Non-optimal

® Proofs of correctness of a schedule using exhaustive simulation and time-
demand analysis

® Next lecture:

e Alternative proofs of correctness for rate monotonic schedules

e Other algorithms: deadline monotonic, earliest deadline first, least slack
time

17



