Priority-driven Scheduling of Periodic Tasks (2)
Lecture Outline

• Schedulability tests for fixed-priority systems
 • Conditions for optimality and schedulability
 • General schedulability tests and time demand analysis

• Practical factors
 • Non-preemptable regions
 • Self-suspension
 • Context switches
 • Limited priority levels
Optimality and Schedulability

- You will recall:
 - EDF and LST dynamic priority scheduling optimal:
 - Always produce a feasible schedule if one exists – on a single processor, as long as preemption is allowed and jobs do not contend for resources
 - Fixed priority algorithms non-optimal in general:
 - RM and DM sometimes fail to schedule tasks that can be scheduled using other algorithms
 - Proof:
 - Hence introduced schedulability tests in lecture 4

\[
\begin{align*}
J_{1,1} & J_{1,2} & J_{1,3} & J_{1,4} & J_{1,5} & J_{1,6} \\
J_{2,1} & J_{2,2} & J_{2,3} & J_{1,1} & J_{1,2} & J_{1,3} & J_{1,4} & J_{1,5} & J_{2,2}
\end{align*}
\]

\[
T_1 = (2, 1) \\
T_2 = (5, 2.5)
\]

- Misses deadlines unless relative priority changes; cannot be scheduled using RM
Optimality of RM and DM Algorithms

• However, fixed priority algorithms can be optimal in restricted systems

• Example:
 • RM and DM are optimal in simply periodic systems
 • A system of periodic tasks is *simply periodic* if the period of each task is an integer multiple of the period of the other tasks, $p_k = n \cdot p_i$, where $p_i < p_k$ and n is a positive integer; for all T_i and T_k
 • True for many real-world systems, since easy to engineer around multiples of a single run loop
Optimality of RM and DM Algorithms

• Theorem: A set of simply periodic, independent, preemptable tasks with $D_i \geq p_i$ is schedulable on one processor using RM or DM iff $U \leq 1$

• Proof:
 • A simply periodic system, assume tasks in phase
 • Worst case execution time occurs when tasks in phase
 • T_i misses deadline at time t where t is an integer multiple of p_i
 • Again, worst case $\Rightarrow D_i = p_i$
 • Simply periodic $\Rightarrow t$ integer multiple of periods of all higher priority tasks
 • Total time required to complete jobs with deadline $\leq t$ is $\sum_{k=1}^{i} \frac{e_k}{p_k} t = t \cdot U_i$
 • Only fails when $U_i > 1$
Identified several simple schedulability tests for fixed-priority scheduling:

- A system of n independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using RM iff $U \leq n \cdot (2^{1/n} - 1)$
- A system of simply periodic independent preemptable tasks with $D_i \geq p_i$ is schedulable on one processor using the RM algorithm iff $U \leq 1$
- [similar results for DM]

But: there are algorithms and regions of operation where we don’t have a schedulability test and must resort to exhaustive simulation

- Is there a more general schedulability test?
- Yes, extend the approach taken for simply periodic system schedulability
Fixed-Priority Tasks: Schedulability Test

- Fixed priority algorithms are predictable and do not suffer from *scheduling anomalies*
 - The worst case execution time of the system occurs with the worst case execution time of the jobs, unlike dynamic priority algorithms which can exhibit anomalous behaviour

- Use as the basis for a general schedulability test:
 - Find the critical instant when the system is most loaded, and has its worst response time
 - Use time demand analysis to determine if the system is schedulable at that instant
 - Prove that, if a fixed-priority system is schedulable at the critical instant, it is always schedulable
A critical instant for a job is the worst-case release time for that job, taking into account all jobs that have higher priority

- i.e. a job released at the same instant as all jobs with higher priority are released, and must wait for all those jobs to complete before it executes
- The response time of a job in T_i released at a critical instant is called the maximum (possible) response time, and is denoted by W_i

The schedulability test involves checking each task in turn, to verify that it can be scheduled when started at a critical instant

- If schedulable at all critical instants, will work at other times
- More work than the test for maximum schedulable utilisation, but less than an exhaustive simulation
Finding the Critical Instant

• A critical instant of a task T_i is a time such that:

 If $w_{i,k} \leq D_{i,k}$ for every $J_{i,k}$ in T_i then

 The job released at that instant has the maximum response time of all jobs in T_i and $W_i = w_{i,k}$

 else if $\exists J_{i,k} : w_{i,k} > D_{i,k}$ then

 The job released at that instant has response time $> D$

 where $w_{i,k}$ is the response time of the job

• In a fixed-priority system where each job completes before the next job in the same task is released, a critical instant occurs when one of its jobs $J_{i,c}$ is released at the same time with a job from every higher-priority task
Finding the Critical Instant: Example

- $T_1 = (2.0, 0.6)$
- $T_2 = (2.5, 0.2)$
- $T_3 = (3.0, 1.2)$

• 3 tasks scheduled using rate-monotonic
• Response times of jobs in T_2 are: $r_{2,1} = 0.8$, $r_{2,3} = 0.3$, $r_{2,3} = 0.2$, $r_{2,4} = 0.3$, $r_{2,5} = 0.8$, …
• Therefore critical instants of T_2 are $t = 0$ and $t = 10$
Using the Critical Instant

- **Time demand analysis:**

 - For each job $J_{i,c}$ released at a critical instant, if $J_{i,c}$ and all higher priority tasks complete executing before their relative deadlines the system can be scheduled.

 - Compute the total demand for processor time by a job released at a critical instant of a task, and by all the higher-priority tasks, as a function of time from the critical instant; check if this demand can be met before the deadline of the job:

 - Consider one task, T_i, at a time, starting highest priority and working down to lowest priority.

 - Focus on a job, J_i, in T_i, where the release time, t_0, of that job is a critical instant of T_i.

 - At time $t_0 + t$ for $t \geq 0$, the processor time demand $w_i(t)$ for this job and all higher-priority jobs released in $[t_0, t]$ is:
 $$w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lfloor \frac{t}{p_k} \right\rfloor e_k$$

 $w_i(t)$ = the time-demand function

 Execution time of job J_i

 Execution time of higher priority jobs started during this interval
Time-Demand Analysis

- Compare the time demand, $w_i(t)$, with the available time, t:
 - If $w_i(t) \leq t$ for some $t \leq D_i$, the job, J_i, meets its deadline, $t_0 + D_i$
 - If $w_i(t) > t$ for all $0 < t \leq D_i$ then the task probably cannot complete by its deadline; and the system likely cannot be scheduled using a fixed priority algorithm
 - Note that this is a sufficient condition, but not a necessary condition. Simulation may show that the critical instant never occurs in practice, so the system could be feasible…

- Use this method to check that all tasks are schedulable if released at their critical instants; if so conclude the entire system can be scheduled
Rate Monotonic:
\[T_1 = (3, 1), \quad T_2 = (5, 2), \quad T_3 = (10, 2) \]
\[U = 0.933 \]

The time-demand functions \(w_1(t), \ w_2(t) \) and \(w_3(t) \) are not above \(t \) at their deadline \(\Rightarrow \) system can be scheduled

Exercise: simulate the system to check this!
Time-Demand Analysis

• The time-demand $w_i(t)$ is a staircase function
 • Steps in the time-demand for a task occur at multiples of the period for higher-priority tasks
 • The value of $w_i(t) - t$ linearly decreases from a step until the next step

• If our interest is the schedulability of a task, it suffices to check if $w_i(t) \leq t$ at the time instants when a higher-priority job is released; test if a system can be scheduled becomes:
 • Compute $w_i(t)$
 • Check whether $w_i(t) \leq t$ is satisfied at any of the instants $t = j \cdot p_k$
 where $k = 1, 2, \ldots, i$ and $j = 1, 2, \ldots, \lfloor \min(p_i, D_i)/p_k \rfloor$
Time-Demand Analysis: Summary

- Time-demand analysis schedulability test is more complex than the schedulable utilization test, but more general
 - Works for any fixed-priority scheduling algorithm, provided the tasks have short response time (i.e. $p_i < D_i$)
 - Only a sufficient test: guarantees that schedulable results are correct, but requires further testing to validate a result of not schedulable
- Alternative approach: simulate the behaviour of tasks released at the critical instants, up to the largest period of the tasks
 - Still involves simulation, but less complex than an exhaustive simulation of the system behaviour
 - Worst-case simulation method
Practical Factors

• We have assumed that:
 • Jobs are preemptable at any time
 • Jobs never suspend themselves
 • Each job has distinct priority
 • The scheduler is event driven and acts immediately

• These assumptions are often not valid… how does this affect the system?
Blocking and Priority Inversion

• A ready job is *blocked* when it is prevented from executing by a lower-priority job;

• A *priority inversion* is when a lower-priority job executes while a higher-priority job is blocked

• These occur if jobs cannot be pre-empted:
 - Many reasons why a job may have non-preemptable sections
 - Critical section over a resource; some system calls are non-preemptable; I/O scheduling; etc.
 - If a job becomes non-preemptable, priority inversions may occur, these may cause a higher priority task to miss its deadline
 - When attempting to determine if a task meets all of its deadlines, must consider not only all the tasks that have higher priorities, but also non-preemptable regions of lower-priority tasks
 - Add the blocking time in when calculating if a task is schedulable
Self-Suspension and Context Switches

• Self-suspension
 • A job may invoke an external operation (e.g. request an I/O operation), during which time it is suspended
 • This means the task is no longer strictly periodic… again need to take into account self-suspension time when calculating a schedule

• Context Switches
 • Assume maximum number of context switches K_i for a job in T_i is known; each takes t_{CS} time units
 • Compensate by setting execution time of each job, $e_{actual} = e + 2t_{CS}$
 • (more if jobs self-suspend, since additional context switches)
Tick Scheduling

- Previous discussion of priority-driven scheduling driven by job release and job completion events
- Alternatively, can perform priority-driven scheduling at with fixed scheduling quanta
- Additional factors to account for in schedulability analysis
 - The fact that a job is ready to execute will not be noticed and acted upon until the next clock interrupt; this will delay the completion of the job
 - A ready job that is yet to be noticed by the scheduler must be held somewhere other than the ready job queue, the pending job queue
 - When the scheduler executes, it moves jobs in the pending queue to the ready queue according to their priorities; once in ready queue, the jobs execute in priority order
POSIX Real-time Scheduling API

- IEEE 1003 POSIX
 - “Portable Operating System Interface”
 - Defines a subset of Unix functionality, various (optional) extensions added to support real-time scheduling, signals, message queues, etc.
 - Widely implemented:
 - Unix variants and Linux
 - Dedicated real-time operating systems
 - Limited support in Windows

- Several POSIX standards for real-time scheduling
 - POSIX 1003.1b ("real-time extensions")
 - POSIX 1003.1c ("pthreads")
 - POSIX 1003.1d ("additional real-time extensions")
 - Supports a sub-set of scheduler features we have discussed
#include <unistd.h>
#include <sched.h>

struct sched_param {
 int sched_priority;
 int sched_ss_low_priority;
 struct timespec sched_ss_repl_period;
 struct timespec sched_ss_init_budget;
};

int sched_setscheduler(pid_t pid, int policy, struct sched_param *p);
int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid, struct sched_param *sp);
int sched_setparam(pid_t pid, struct sched_param *sp);

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

int sched_rr_get_interval(pid_t pid, struct timespec *t);
int sched_yield(void);
POSIX Scheduling API (Threads)

```c
#include <unistd.h>
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_getschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedparam(pthread_attr_t *attr, struct sched_param *p);
int pthread_attr_setschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_create(pthread_t *thread,
                  pthread_attr_t *attr,
                  void *(*thread_func)(void*),
                  void *thread_arg);

int pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **retval);
```

Thread scheduling API mirrors process scheduling API
POSIX Scheduling API

- Four standard scheduling policies:
 - SCHED_FIFO: Fixed priority, pre-emptive, FIFO scheduler
 - SCHED_RR: Fixed priority, pre-emptive, round robin scheduler
 - SCHED_SPORADIC: Sporadic server
 - SCHED_OTHER: Unspecified (default time-sharing scheduler)

- Limited set of priorities:
 - Use sched_get_priority_min(), sched_get_priority_max() to determine the range
 - Guarantees at least 32 priority levels

- Good support for fixed-priority scheduling
Implementing Rate Monotonic Scheduling

- Rate monotonic and deadline monotonic schedules can naturally be implemented using POSIX primitives
 - Assign priorities to tasks in the usual way for RM/DM
 - Query range of allowed system priorities (`sched_get_priority_min()` and `sched_get_priority_max()`)
 - Map task set onto system priorities
 - Start threads for each task using assigned priorities and SCHED_FIFO

- No explicit support for indicating deadlines, periods
 - Implement by hand, as a run-loop for each task
Summary

• Have discussed fixed-priority scheduling of periodic tasks:
 • Optimality of RM and DM
 • More general schedulability tests and time-demand analysis

•Outlined practical factors that affect real-world periodic systems