Resource Access Control

Real-Time and Embedded Systems (M)
Tutorial 5

Tutorial Outline

- Review of lectures
- Worked examples
- Question & answer

Review of Lectures

- Definition of resources
- Resources access control protocols
 - Non-preemptable critical sections
 - Basic priority inheritance protocol
 - Priority ceiling protocol
 - Basic priority ceiling protocol
 - Stack-based priority ceiling protocol
 - Ceiling priority protocol
 - Resource access control for dynamic priority systems
- Implementing resource access control
 - Locking primitives
 - Semaphores and mutexes; priority inheritance using POSIX mutexes/scheduling
 - Messages, signals and events
 - Priority inheritance for messaging

Key Learning Outcomes

- Defined resources, explaining timing anomalies and the need for resource access control
- Illustrated operation of several resource access control protocols:
 - Non-preemptable critical section
 - Basic priority inheritance protocol
 - Basic and stack-based priority ceiling protocols
- Described some practical methods used to implement resource access control:
 - Use of POSIX real-time extensions and mutexes for locking, to directly implement the ideas described
 - Other mechanisms: semaphores, message queues, signals, etc.

Example: Priority Ceiling Protocol

- Consider a system of 3 jobs:
 - J_1 released at 3.6, executes for 3.8, and has highest priority
 - $-J_2$ released at 1.0, executes for 4.0
 - $-J_3$ released at 0.0, executes for 5.6, and has lowest priority
- Resources:
 - J_1 requires resource red for 1.6 units after it has executed for 1.0 units
 - J_2 requires resource green for 2.0 units after it has executed for 2.0 units; 0.6 units after getting green it also requires blue for 0.8 units
 - J_3 requires resource blue for 2.0 units, after it has executed for 0.6 units; 1.0 units after getting blue it also requires green for 1.0 units
- Draw a diagram to show how the system is scheduled if the *priority ceiling protocol* is used to arbitrate resource access

Example: Priority Inheritance Protocol

- Consider a system of 3 jobs:
 - J_1 released at 3.6, executes for 3.8, and has highest priority
 - $-J_2$ released at 1.0, executes for 4.0
 - $-J_3$ released at 0.0, executes for 5.6, and has lowest priority
- Resources:
 - J_1 requires resource red for 1.6 units after it has executed for 1.0 units
 - J_2 requires resource green for 2.0 units after it has executed for 2.0 units; 0.6 units after getting green it also requires blue for 0.8 units
 - J_3 requires resource blue for 2.0 units, after it has executed for 0.6 units; 1.0 units after getting blue it also requires green for 1.0 units
- Draw a diagram to show how the system is scheduled if the *priority inheritance protocol* is used to arbitrate resource access

Choice of Access Control Protocol

- The choice of resource access control protocol impacts not just the blocking time, but also correctness of the system
 - The priority inheritance protocol does not prevent deadlock, although the priority ceiling protocols do
 - Must use an additional protocol e.g. enforce lock ordering to ensure correctness, if priority inheritance used
 - E.g. if a job needs both green and blue resources, it *must* lock green before it tries to lock blue, even if this increases the length of the critical section

Any Further Questions?