The Basics of Real-Time Systems

Real-Time and Embedded Systems (M)

Tutorial 1

Tutorial Outline

- Review of material
- Worked examples
- Question & answer

Review of Material

• Lecture 1:

- Introduction to real-time and embedded systems
 - Examples of digital control, higher-level control, communication
- Types of real-time system
 - Cyclic synchronous vs. asynchronous and unpredictable
- Implementation considerations

• Lecture 2:

- Outline of terminology and reference model
- Hard and soft real-time systems

• Lecture 3:

- Outline different approaches to scheduling and their constraints:
 - Clock-driven
 - Weighted round-robin
 - Priority-driven

Identification of Jobs, Task Graphs

- Key learning outcomes from the first three lectures:
 - Understanding terminology; what is a real-time system?
 - Understanding importance of job scheduling; demonstration of timeliness
 - The ability to identify the jobs and tasks that form a system
 - The ability to draw a task graph showing dependencies between jobs
 - The ability to trace execution of the jobs forming a task

- Lecture 3 had an example of tracing the execution of a task
- Today: worked example of job identification and creation of task graphs

Example: Helicopter Flight Digital Control

- Do the following in each 1/180-second cycle:
 - Validate sensor data and select data source; on failure reconfigure the system
 - Do the following 30-Hz avionics tasks, each once every 6 cycles:
 - Keyboard input and mode selection
 - Data normalization and coordinate transformation
 - Tracking reference update
 - Do the following 30-Hz computations, each once every 6 cycles
 - Control laws of the outer pitch-control loop
 - Control laws of the outer roll-control loop
 - Control laws of the outer yaw- and collective-control loop
 - Do each of the following 90-Hz computations once every 2 cycles, using outputs produced by the 30-Hz computations
 - Control laws of the inner pitch-control loop
 - Control laws of the inner roll- and collective-control loop
 - Compute the control laws of the inner yaw-control loop, using outputs from the 90-Hz computations
 - Output commands to control surfaces
 - Carry out built-in-test

Example: Helicopter Flight Digital Control

• What are the jobs and tasks in this example?

Example: Helicopter Flight Digital Control

- What does the corresponding task graph look like?
 - Note: nothing stated about task execution times, so assume:

$$e_1 = 0.2$$

$$e_2 = 0.2$$

$$e_3 = 0.1$$

$$e_4 = 0.1$$

$$e_5 = 0.3$$

$$e_6 = 0.1$$

Example: Helicopter Flight Control

- Demonstrate how to identify the various parts of the system:
 - Two tasks: main control loop, reconfiguration task
 - Main control loop comprised of 6 inter-dependent tasks
- Demonstrate how to construct a task graph
- Shows how to abstract the system to its essential details, so it can be analysed

Any Further Questions?