
Low-Level and Embedded
Programming (1)

Real-Time and Embedded Systems (M)
Lecture 18

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Introduction to low level and embedded programming
• Interacting with hardware
• Interrupt and timer latency
• Memory issues

– Protection
– Virtual memory
– Allocation, locking, leaks and garbage collection
– Caches

• Power, size and performance constraints
• System longevity
• Development and debugging

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Low Level and Embedded Programming

• Real time and embedded systems programming differs from
conventional desktop applications programming
– Must respect timing constraints
– Must interact with environment
– Often very sensitive to correctness and robust operation
– Often very sensitive cost, weight, or power consumption

• Implications to consider:
– Proofs of correctness, schedulability tests, etc.

• Must consider system implementation issues, not just theory
– Limited resources available

• Low level programming environments typical
• Require high awareness of system issues; interaction with hardware
• Cannot necessarily depend on “common” language, operating system, or

hardware features being present

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Interacting with Hardware: Concepts

• Two architectures for device access
– Separate device bus

• Different assembler instructions to
access devices than to access main
memory

• Separate physical connection to the
device address/data bus

• Example: Early Intel PC hardware;
kept for backwards compatibility
on modern systems, but rarely used

• Program using inline assembler
– Memory mapped I/O

• Devices appear at some address in
memory; access as-if any other part
of system memory

• Single set of assembler instructions
for memory access; single address
and data bus on processor

• Example: most modern systems
• Program using high level language

CPUMemory Device Device

Address

Data Data

Device address

Separate device bus

CPU Memory Device Device

Data

Address

Memory mapped architecture

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Interacting with Hardware: Concepts

• Two architectures for device control
– Polling

• Device sets bit in control register to
indicate some action occurred

• Software periodically inspects that
register, decides whether to take
some action

– Interrupt driven
• Device sets bit in control register to

indicate some action occurred, then
asserts a processor interrupt to
notify software

• Software responds to interrupt and
takes appropriate action

– Most current hardware is interrupt
driven, but can usually be switched
to polled mode (useful for high rate
sources to avoid interrupt load, or if
running a cyclic executive)

• Devices present control registers as
bit fields
– E.g.

– Requires bit-level manipulation to
access fields in control word

• Address of control word
• Number of control words
• Width of control words in bits
• Bit ordering within control word
• Some bits may be read- or write-

only; some may change when read

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bits
15 - 12 : Errors
11 : Busy
10 - 8 : Unit select
 7 : Done/ready
 6 : Interrupt enable
 5 - 3 : Reserved
 2 - 1 : Device function
 0 : Device enable

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Interacting with Hardware: C

struct {
 short errors : 4;
 short busy : 1;
 short unit_sel : 3
 short done : 1;
 short irq_enable : 1
 short reserved : 3
 short dev_func : 2;
 short dev_enable : 1;
} ctrl_reg;

int enable_irq(void)
{
 ctrl_reg *r = 0x80000024;
 ctrl_reg tmp;

 tmp = *r;
 if (tmp.busy == 0) {
 tmp.irq_enable = 1;
 *r = tmp;
 return 1;
 }
 return 0;
}

• C allows definition of bit fields and explicit
access to a particular memory address using
pointers
– Example on left shows simple manipulation

of a control word at address 0x80000024
• Allows implementation of device drivers and

interrupt handlers
• Illusion of portable code: standard C does not

specify:
– Size of basic types

• Including number of bits in a byte
– Bit and byte ordering
– Alignment or atomicity of memory access
– (defined by compiler/OS for each platform)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

type ErrorType is range 0..15;
type UnitSelType is range 0..7;
type ResType is range 0..7;
type DevFunc is range 0..3;
type Flag is (Set, NotSet);
type ControlRegister is
record
 errors : ErrorType;
 busy : Flag;
 unitSel : UnitSelType;
 done : Flag;
 irqEnable : Flag;
 reserved : ResType;
 devFunc : DevFunc;
 devEnable : Flag;
end record;

for ControlRegister use
record
 errors at 0*Word range 12..15;
 busy at 0*Word range 11..11;
 unitSel at 0*Word range 8..10;
 done at 0*Word range 7.. 7;
 irqEnable at 0*Word range 6.. 6;
 reserved at 0*Word range 3.. 5;
 devFunc at 0*word range 1.. 2;
 devEnable at 0*Word range 0.. 0;
end record;

for ControlRegister’Size use 16;
for ControlRegister’Alignment use Word;
for ControlRegister’Bit_order use Low_Order_First;
...

Interacting with Hardware: Ada

• Ada has extensive support for low-
level hardware access and interrupt
handlers
– Precise control over record layout

in memory, byte ordering, bit size
of types, etc.

• Perhaps overly verbose...?
– Facilities for interrupt handlers in

the language

• Allows portable code to be written
that manipulates hardware devices

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Interacting with Hardware

• Language support for portable hardware access conceptually nice,
but less useful than might be expected
– Real time embedded systems typically tied to platform due to specialist

hardware
– Little need for portability at the language level, since underlying system

unique

• Main advantage of Ada: strong type checking for hardware access

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Interrupt and Timed Task Latency

• Devices typically request service using interrupts
– Need predictable worst-case bounds on service time, otherwise cannot

reason about the system
– Both interrupt latency and task scheduling latency

• Examples:
– Linux has ~600µs typical interrupt handler latency, often runs with 100Hz

clock for task scheduling (i.e. 10000µs latency)
• Long history of problems with system call latency, causing tasks to block for

hundreds of milliseconds on certain device accesses
• Resolved for most common devices, but still unpredictable (and long) latency

with uncommon hardware
– RTLinux claims a maximum 15µs interrupt handler latency, all scheduled

tasks execute within at most 35µs of their scheduled time
• Other hard real-time operating systems offer similar guarantees

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Interrupt and Timed Task Latency

• Why such a difference?
– Preemptable microkernel, with single address space

• No context switch, user-to-kernel mode, overhead
– No virtual memory or memory protection

• No paging delays
• No delays while page tables adjusted

– Device drivers designed with minimal non-preemptable sections
• Light-weight, prioritised, threads fire in response to interrupts

• Does it matter? It depends on the application…

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

KernelApplication

Memory Protection

• Many embedded systems use a single flat address space
– Applications, shared libraries, kernel, devices all visible
– A system or library call is equivalent to a function call

– Makes system calls, interrupts, very fast and predictable
• No context switch to kernel mode
• No adjustment of MMU page tables

– Consequences
• No isolation between applications, or between applications and the kernel
• A change to one part implies that the entire system has to be revalidated;

difficult as systems become larger
– Some systems offer limited protection

• Read only mapping of program/system text; IRQ vectors
• Optional full memory protection

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Memory Protection

• Consequences of offering memory protection:
– Unpredictable latency

• May take longer to task switch to/from a protected task
– Memory overhead

• Protection provided on a per-page basis, leads to wastage
• Overhead of maintaining the page tables and protection maps

– Code overhead
• Operating system is required to trap illegal access and recover system to a safe

state

• Which is easiest: proving the system correct, or writing handlers
to safely recover from all possible failures, delays?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Virtual Memory: Address Translation

• Two aspects to virtual memory:
– Address translation
– Paging to disk

• Address translation is the act of making a fragmented block of
physical memory appear to be a single contiguous block
– Useful in dynamic systems: enables requests for large blocks of memory to

be allocated when there is no physically contiguous block available
– Adds overhead, since system must manage address translation tables

• Uses memory, increases context switch time
• Complicates DMA device access

• Better to pre-allocate static memory pools for real-time tasks
– Manage the sub-division of address space within the application

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Virtual Memory: Paging to Disk

• Disk based virtual memory is supported by many systems that run
both real time and non-real time tasks
– Paging to disk clearly impact real-time performance
– Unpredictable delays, depending whether page is in memory or on disk

• Systems usually provide ability to (selectively) prevent paging
– Examples:

• POSIX allows regions of memory to be locked into RAM and preventing from
paging using mlock(addr, len) and mlockall()

• Windows allows all memory owned by a particular thread to be locked

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Memory Leaks and Garbage Collection

• An embedded system has to run for a long period of time, without
user intervention

• Resource leaks can be problematic:
– C programs typically have memory leaks due to programmer error

• Significant problem in long-lived or resource constrained systems
• Better to pre-allocate static buffers, avoid the chance of a memory leak
• Be very careful to free memory and other resources after use
• Do you always check for out of memory errors? And recover gracefully?

– Remember the recovery code cannot allocate memory
– This may include the stack frame needed to make a function call!

– Modern languages use garbage collection to avoid resource leaks
• Has a poor reputation due to unpredictable delays when collection occurs

– E.g. Real Time Java provides ability to allocate objects from a non-garbage
collected memory pool, with manual free function, to ensure predictability

• However, real-time garbage collection algorithms – with predictable latency, at
controlled times – do exist

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

uname -srm
Linux 2.4.25 i686
cat tst.c
int main()
{
 return 0;
}
gcc tst.c -o tst
ls -l tst
-rwxrwx--- 1 csp csp 4507 Mar 16 00:51 tst

Memory: What is a Small System?

• Embedded systems often very constrained compared to typical
desktop computers
– You may be running on an 8 bit processor, with kilobytes of RAM
– Operating system typically optimised for the environment, provides only

minimal required functions
• The QNX 4.x microkernel is approximately 12kbytes in size
• The VRTX microkernel is typically 4-8kbytes in size

– For comparison:

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Memory: What is a Small System?

• Example: Renesas H8/3217
– 16 - 60kBytes ROM
– 512Bytes - 2kBytes SRAM
– 10-16MHz clock
– 1 x 16-bit timer; 3 x 8-bit timer
– 1 x Watchdog timer
– 2 x UARTS; 2 x I²C interfaces

• The H8/3217 provides a solution to
applications where a cost effective
solution with up to 4 channels of
serial communications is required
– Monitors, Televisions
– Radios, Stereo systems
– Set Top Box system controllers

• The H8/3217 is a member of the
H8/300 series of high performance
8/16-bit CPU’s. This device is used
in applications where a high level of
communications capability is
required

• The combination of 2 high speed
UARTS capable of transmitting
data asynchronously at 500k baud
and two channels of I2C capable of
transmitting at over 400k bits per
second make this device a powerful
communications processor

[Adapted from Renesas website]

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Effects of Cache

• You may be running on a more modern processor
– PowerPC 405CR embedded processor

• 32 bit RISC processor, compatible with desktop PowerPC
• 133MHz or 266MHz clock speed
• 500mW power consumption

– Compare: Pentium M (“Centrino”) processor consumes up to 24.5W
• CodePackTM compression of executables
• Likely has several megabytes of memory
• [Various types of PowerPC and ARM processors commonly used]

– Relatively cheap, comparatively high performance, low power

• Has a small cache, which you may want to disable:
– Processor and memory speeds are closely matched

• Compare to desktop processor, with order magnitude difference
– Simpler to predict memory access times without the cache
– Cache improves average response times, but introduces unpredictability

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Power, Size and Performance Constraints

• Embedded systems often battery powered or power sensitive
– What influences power consumption?

• Power consumption ∝ (clock speed)2

• Memory size and processor utilization

• May have to be physically small and/or robust
• May have strict heat production limits
• May have strict cost constraints

– That processor is slower, but 10¢ cheaper, the production run is 1 million,
you paid your salary for the next couple of years…

• Used to throwing hardware at a problem, and writing inefficient –
but easy to implement – software
– Software engineering based around programmer productivity
– The constraints may be different in the embedded world…

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

System Longevity

• Embedded systems often safety critical or difficult to upgrade
Medical devices CD or DVD player
Automotive or flight control Washing machine
Railway signalling Microwave oven
Industrial machinery Pacemaker

• May need to run for several years, in environment where failures
either cause injury or are expensive to fix
– Can you guarantee your system will run for 10 years without crashing?
– Do you check all the return codes and handle all errors?
– Fail gracefully?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Development and Debugging

• Embedded systems typically too limited to run a compiler
• Develop using a cross compiler running on a PC, download code

using a serial line, or by burning a flash ROM and installing

• Often limited debugging facilities:
– Serial line connection to host PC
– LEDs on the development board
– Logic analyser or other hardware test equipment

• Formal methods, proofs or correctness, simulations become more
important when real system so difficult to analyse

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Low level and embedded programming
– Control register access, bit packing, alignment, etc.
– Interrupts
– Memory

• Address translation
• Paging and virtual memory
• Allocation and garbage collection
• Caching

• Consider:
– Systems issues, how features that improve general purpose performance

hinder real time systems
– Constraints on embedded systems, differences in engineering compared

with general purpose systems

