
Priority Driven Scheduling of
Aperiodic and Sporadic Tasks (2)

Real-Time and Embedded Systems (M)
Lecture 8

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Scheduling aperiodic jobs (cont’d)
– Sporadic servers
– Constant utilization servers
– Total bandwidth servers
– Weighted fair queuing servers

• Scheduling sporadic jobs

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Review: Scheduling Aperiodic Tasks

• Lecture 7 introduced the scheduling problem for aperiodic jobs:
– Aim to complete each aperiodic jobs as soon as possible, without causing

periodic tasks or accepted sporadic jobs to miss deadlines

• Simple approaches to scheduling aperiodic jobs not sufficient:
– Background server is correct, but unduly delays aperiodic jobs
– Interrupt driven server is (typically) not correct

• Two more complex approaches offer better performance:
– Slack stealing
– Periodic servers:

• Polling server
– Simple, provably correct, provides a guaranteed fraction of the processor for

scheduling aperiodic jobs, but sometimes gives poor response time
• Deferrable server

– Improves on the response time of the polling server, maintains its advantages

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

0 1 2 3 4 5 6 7 8 9

T2=(p=6.5, e=0.5)

T1=(φ=2, p=3.5, e=1.5)

TDS=(p=3, e=1)

0

1
Budget

JA released

Budget replenished

Budget exhausted

Budget replenished

T1 blocked for 1.2 units
although execution time
of the deferrable server
is only 1.0 units (with
period 3 units)

Limitations of Deferrable Servers

• Limitation of deferrable servers – they may delay lower-priority
tasks for more time than a periodic task with the same period and
execution time:

• A sporadic server is designed to eliminate this limitation
– A different type of bandwidth preserving server
– More complex consumption and replenishment rules ensure that a sporadic

server with period pS and budget eS never demands more processor time
than a periodic task with the same parameters

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

A “Simple” Fixed-Priority Sporadic Server

• Consider a system T of N independent preemptable periodic tasks,
plus a single sporadic server task with parameters (ps, es)
– Tasks are scheduled using a fixed-priority algorithm; system schedulable if

we assume (ps, es) behaves as a standard periodic task

• Definitions:
– TH is the subset of periodic tasks with higher priorities than the server

• That subset may be idle when no job in TH is ready for execution, or busy
– Define tr as the last time the server budget replenished
– Define tf as the first instant after tr at which the server begins to execute
– At any time t define:

• BEGIN as the start of the earliest busy interval in the most recent contiguous
sequence of busy intervals of TH starting before t

– Busy intervals are contiguous if the later one starts immediately the earlier one ends
• END as the end of the latest busy interval in this sequence if this interval ends

before t; define END = ∞ if the interval ends after t

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

A “Simple” Fixed-Priority Sporadic Server

• Consumption rule:
– At any time t after tr, if the server has budget and if either of the following

two conditions is true, the server’s budget is consumed at the rate of 1 per
unit time:

C1: The server is executing
C2: The server has executed since tr and END < t

– When they are not true, the server holds its budget

• That is:
– The server executes for no more time than it has execution budget
– The server retains its budget if:

• A higher-priority job is executing, or
• It has not executed since tr

– Otherwise, the budget decreases when the server executes, or if it idles
while it has budget

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

A “Simple” Fixed-Priority Sporadic Server

• Replenishment rules
R1: When system begins executing, and each time budget is replenished, set

the budget to eS and tr = the current time.
R2: When server begins to execute (defined as time tf)

if END = tf then
te = max(tr, BEGIN)

else if END < tf then
te = tf

The next replenishment time is set to te + pS.
R3: The next replenishment occurs at the next replenishment time (= te + pS),

except under the following conditions:
(a) If te + pS is earlier than tf the budget is replenished as soon as it is exhausted
(b) If T becomes idle before te + pS, and becomes busy again at tb, the budget is
 replenished at min(tb, te + pS)

te = the effective replenishment time

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example: Fixed-Priority Sporadic Server

TSS

T1

T2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T3

T1=(3, 0.5), T2=(4, 1.0), T3=(19, 4.5), Tss=(5, 1.5)
Rate monotonic schedule; simple sporadic server

A1: r = 3, e = 1

A2: r = 7, e = 2

A3: r = 15.5, e = 2

A1 A2 A3

Max. blocking time due
to sporadic server = 1.5

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example: Fixed-Priority Sporadic Server

TSS

T1

T2

0.0

1.0

Budget

0.5

1.5

No aperiodic jobs
server suspended

Job A1 released,
server blocked

Job A1 executes

Budget continues to be used
according to rule C2

Job A2 released
but no budget

Budget available
but blocked

Job A2 executes
No budget

Sporadic server is constrained to
execute for at most 1.5 units out
of every 5, due to consumption
and replenishment rules

A1 A2 A3

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

A Simple Fixed-Priority Sporadic Server

• A sporadic server is more complex than a polling server or a
deferrable server
– Consumption and replenishment rules require keeping track of a lot of

data, several cases to consider when making scheduling decisions

• This complexity is acceptable, because schedulability of a
sporadic server is much easier to demonstrate

• Theorem: for the purpose of validating schedulability, you can
treat a simple sporadic server (ps, es) in a fixed-priority system
exactly the same as any other task Ti with pi=ps and ei=es
– The actual inter-release times of the sporadic server will sometimes be

greater than ps, and their execution times less than es, but this does not
affect correctness

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Other Fixed-Priority Sporadic Servers

• It is possible to replenish the budget of a sporadic server more
aggressively, and to preserve it for longer, than does a simple
sporadic server

• Further improves response time of aperiodic jobs, at the price of
more complex consumption and replenishment rules, and higher
scheduling overhead

• Examples:
– A sporadic/background server which claims all background time, in

addition to the time claimed by the periodic component of the server
– A cumulative replenishment server which keeps any remaining budget at

the end of each period for use in following periods
– …

Unclear if the complexity of these variants is worthwhile…

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Simple Dynamic-Priority Sporadic Server

• It is possible to define a simple sporadic server to operate in a
dynamic-priority environment
– E.g. when using EDF or LST scheduling

• Consumption and replenishment rules are conceptually similar to
those for a fixed-priority scheduler, with minor modifications that
account for the difference in scheduling algorithm
– [See book for details]

• Provides same schedulability guarantees as the simple sporadic
server for fixed-priority schedulers
– A simple sporadic server (ps, es) in an EDF or LST system can be treated

exactly the same as any other task Ti with pi=ps and ei=es when performing
schedulability analysis

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Other Bandwidth Preserving Servers

• Now consider three other bandwidth preserving server
algorithms:
– Constant utilization server
– Total bandwidth server
– Weighted fair queuing server

• All are approximations to an ideal generalised processor sharing
algorithm
– Aim is to assign a portion of the available processor time to a task, making

it believe it was executing on a slower processor, independent of any other
tasks

– Aiming to provide fair sharing, timing isolation, or guaranteed throughput
– Widely used in network scheduling, but can also be used to schedule

servers for aperiodic jobs

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Constant Utilization Server

• A constant utilization server reserves a known fraction, ũs, of the
processor time for execution of the server

• Like other bandwidth preserving servers, it has a budget and is
defined in terms of consumption and replenishment rules

• When the budget is non-zero, the server is scheduled with other
tasks on an EDF basis
– The budget and deadline of the server are chosen such that the utilization

of the server is constant when it executes, and that it is always given
enough budget to complete the job at the head of its queue each time its
budget is replenished

– The server never has any budget if it has no work to do

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Constant Utilization Server

• Consumption rule:
– A constant utilization server only consumes budget when it executes

• Replenishment rules:
– Initially, budget es = 0 and deadline d = 0
– When an aperiodic job with execution time e arrives at time t to an empty

aperiodic job queue
• If t < d, do nothing (⇒ server is busy; wait for it to become idle)

• If t ≥ d then set d = t + e/ũs and es = e
– At the deadline d of the server

• If the server is backlogged, set d = d + e/ũs and es = e
⇒ was busy when job arrived

• If the server is idle, do nothing

i.e. the server is always given enough budget to complete the job at the
head of its queue, with known utilization, when the budget is replenished

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Total Bandwidth Server

• A constant utilization server gives a known fraction of processor
capacity to a task; but cannot claim unused capacity to complete
the task earlier

• A total bandwidth server improves responsiveness by allowing a
server to claim background time not used by the periodic tasks
– Change the replenishment rules slightly, leave all else the same:

• Initially, es = 0 and d = 0
• When an aperiodic job with execution time e arrives at time t to an empty

aperiodic job queue
– Set d = max(d, t) + e/ũs and es = e

• When the server completes the current aperiodic job, the job is removed from
the queue and

– If the server is backlogged, set d = d + e/ũs and es = e
– If the server is idle, do nothing

– Always ready for execution when backlogged
– Assigns at least fraction ũs of the processor to a task

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Weighted Fair Queuing Server

• Aim of the constant utilization and total bandwidth servers is to
assign some fraction of processor capacity to a task

• When assigning capacity there is the issue of fairness:
– A scheduling algorithm is fair within any particular time interval if the

fraction of processor time in the interval attained by each backlogged
server is proportional to the server size

• Not only do all tasks meet their deadline, but they all make continual progress
according to their share of the processor, no starvation

– Constant utilization and total bandwidth servers are fair on the long term,
but can diverge significantly from fair shares in the short term

• Total bandwidth server partly by design, since it uses background time, but
also has fairness issues when there is no spare background time

• As we discuss in lecture 17, the weighted fair queuing algorithm
can also be used to share processor time between servers, and is
designed to ensure fairness in allocations

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduling Sporadic Jobs

• Have focussed considerable effort on improving response time of
aperiodic jobs

• Now turn to the problem of scheduling sporadic jobs alongside a
system of periodic tasks and aperiodic jobs

• Recall the sporadic job scheduling problem:
– Based on the execution time and deadline of each newly arrived sporadic

job, decide whether to accept or reject the job
– Accepting the job implies that the job will complete within its deadline,

without causing any periodic task or previously accepted sporadic job to
miss its deadline

– Do not accept a sporadic job if cannot guarantee it will meet its deadline

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Model for Scheduling Sporadic Jobs

• When sporadic jobs arrive, they are both accepted and scheduled
in EDF order
– In a dynamic-priority system, this is the natural order of execution
– In a fixed-priority system, the sporadic jobs are executed by a bandwidth

preserving server, which performs an acceptance test and runs the sporadic
jobs in EDF order

– In both cases, no new scheduling algorithm is required

• Definitions:
– Sporadic jobs are denoted by Si(ri, di, ei) where ri is the release time, di is

the (absolute) deadline, and ei is the maximum execution time
– The density of a sporadic job Δi = ei/(di - ri)

• The total density of a system of n jobs is Δ = Δ1 + Δ2 + … + Δn

– The job is active during its feasible interval (ri, di]

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.
Sporadic Jobs in Dynamic-Priority Systems

• Theorem: A system of independent preemptable sporadic jobs is
schedulable according to the EDF algorithm if the total density of
all active jobs in the system ≤ 1 at all times
– This is the standard schedulability test for EDF systems, but including both

periodic and sporadic jobs
– This test uses the density since deadlines may not equal periods; hence it is

a sufficient test, but not a necessary test

• What does this mean?
– If we can bound the frequency with which sporadic jobs appear to the

running system, we can guarantee that none are missed
– Alternatively, when a sporadic job arrives, if we deduce that the total

density would exceed 1 in its feasible interval, we reject the sporadic
job (admission control)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.
Admission Control for Sporadic Jobs/EDF

• At time t there are n active sporadic jobs in the system
• The EDF scheduler maintains a list of the jobs, in non-decreasing

order of deadline
– The deadlines partition the time from t to ∞ into n + 1 discrete intervals:

I1, I2, …, In+1

• I1 begins at t and ends at the earliest sporadic job deadline
• For each 1 ≤ k ≤ n, each interval Ik+1 begins when the interval Ik ends, and ends

at the next deadline in the list (or ∞ for In+1)
– The scheduler maintains the total density Δs,k of each interval Ik

• Let Il be the interval containing the deadline d of the new sporadic
job S(t, d, e)
– The scheduler accepts the job if

for all k=1, 2, …, l
– i.e. accept if the new sporadic job can be added, without increasing the

density of any intervals past 1
!

e

d " t
+ #

s,k
$1"#

Density of new job

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.
Admission Control for Sporadic Jobs/EDF

• Notes:
– This acceptance test is not optimal: a sporadic job may be rejected even

though it could be scheduled
• The result for the schedulable utilization is based on the density and hence is

sufficient but not necessary
• It is possible to derive a – much more complex – expression for schedulability

which takes into account slack time, and is optimal. Unclear if the complexity
is worthwhile.

– This acceptance test assumes every sporadic jobs is ready for execution
when released

• If this is not the case, must modify the acceptance test to take into account the
time when the jobs become ready, rather than their release time, when testing
the intervals to see if their density exceeds 1

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Sporadic Jobs in Fixed-Priority Systems

• One way to schedule sporadic jobs in a fixed-priority system is to
use a sporadic server to execute them

• Because the server (ps, es) has es units of processor time every ps
units of time, the scheduler can compute the least amount of time
available to every sporadic job in the system
– Assume that sporadic jobs ordered among themselves in EDF
– When first sporadic job S1(t, ds,1, es,1) arrives, there is at least
(ds,1 - t)/ps⋅es units of processor time available to the server
before the deadline of the job

• (ds,1 - t)/ps = number of server periods available
– Therefore it accepts S1 if the slack of the job

!

" s,1(t) = (ds,1 # t) / ps$ %es # es,1 & 0

[cont’d]

Time available

Execution time

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Sporadic Jobs in Fixed-Priority Systems

– To decide if a new job Si(t, ds,i, es,i) is acceptable when there are n sporadic
jobs in the system, the scheduler first computes the slack σs,i(t) of Si:

where ξs,k is the execution time of the completed part of the existing job Sk
The job cannot be accepted if σs,i(t) < 0

• As for σs,1(t), but accounting for the already accepted sporadic jobs
– If σs,i(t) ≥ 0, the scheduler then checks if any existing sporadic job Sk with

deadline after ds,i may be adversely affected by the acceptance of Si
• This is done by checking if the slack σs,k(t) for each Sk at the time is at least

equal to the execution time es,i of Si

• i.e. the job Si is accepted if σs,k(t) - es,i ≥ 0 for every existing sporadic job Sk
with deadline not less than ds,i

• The acceptance test for fixed-priority systems is more complex
than that for dynamic-priority systems, but is still of reasonable
time complexity to be implemented “on-line”

!

" s,i(t) = (ds,i # t) / ps$ %es # es,i # (es,k #& s,k)
ds ,k <ds ,i

'

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Have discussed further:
– Scheduling aperiodic jobs (cont’d)

• Sporadic servers
• Constant utilization servers
• Total bandwidth servers
• Weighted fair queuing servers

– Scheduling sporadic jobs

• Next: tutorial to recap the material from lectures 7 and 8

• Problem set 3 now available: due at 1:00pm on 9th February

