
Priority-driven Scheduling of
Periodic Tasks (2)

Real-Time and Embedded Systems (M)
Lecture 6

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Schedulability tests for fixed-priority systems
– Conditions for optimality and schedulability
– General schedulability tests and time demand analysis

• Practical factors
– Non-preemptable regions
– Self-suspension
– Context switches
– Limited priority levels

[Continues from material in lecture 5, with the same assumptions]

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

• You will recall:
– EDF and LST dynamic priority scheduling optimal:

• Always produce a feasible schedule if one exists – on a single processor, as
long as preemption is allowed and jobs do not contend for resources

• Lecture 3 + confirmation last lecture: UEDF = 1

– Fixed priority algorithms non-optimal in general:
• e.g. RM and DM sometimes fail to schedule tasks that can be scheduled using

other algorithms
• Proof:

– Hence introduced schedulability tests in lecture 5

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2J2,1J1,1

T1 = (2, 1)
T2 = (5, 2.5)

J1,1 J1,2 J1,3 J1,4 J1,5
J2,2J2,1 J2,3

J1,6

0 1 2 3 4 5 6 7 8 9 10

T1 > T2 T2 > T1
Misses deadlines unless relative priority
changes; cannot be scheduled using RM

Optimality and Schedulability

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Optimality of RM and DM Algorithms

• Fixed priority algorithms can be optimal in restricted systems

• Example:
– RM and DM are optimal in simply periodic systems
– A system of periodic tasks is simply periodic if the period of each task is an

integer multiple of the period of the other tasks:
pk = n⋅pi

where pi < pk and n is a positive integer; for all Ti and Tk

– True for many real-world systems, e.g. the helicopter flight control system
discussed in lecture 1

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Optimality of RM and DM Algorithms

• Theorem: A system of simply periodic, independent, preemptable
tasks with Di ≥ pi is schedulable on one processor using the RM
algorithm if and only if U ≤ 1
– Corollary: The same is true for the DM algorithm

• Proof:
– A simply periodic system, assume tasks in phase

• Worst case execution time occurs when tasks in phase
– Ti misses deadline at time t where t is an integer multiple of pi

• Again, worst case ⇒ Di = pi

– Simply periodic ⇒ t integer multiple of periods of all higher priority tasks
– Total time required to complete jobs with deadline ≤ t is

– Only fails when Ui > 1

!

ek
pk
t

k=1

i

" = t #Ui

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulability of Fixed-Priority Tasks

• Identified several simple schedulability tests for fixed-priority
scheduling:
– A system of n independent preemptable periodic tasks with Di = pi can be

feasibly scheduled on one processor using RM iff U ≤ n⋅(21/n – 1)
– A system of simply periodic independent preemptable tasks with Di ≥ pi is

schedulable on one processor using the RM algorithm iff U ≤ 1
– [similar results for DM]

• But: there are algorithms and regions of operation where we don’t
have a schedulability test and must resort to exhaustive simulation
– Is there a more general schedulability test?
– Yes, extend the approach taken for simply periodic system schedulability

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Fixed-Priority Tasks: Schedulability Test

• Fixed priority algorithms are predictable and do not suffer from
scheduling anomalies
– The worst case execution time of the system occurs with the worst case

execution time of the jobs, unlike dynamic priority algorithms which can
exhibit anomalous behaviour

[See also lecture 3]

• Use this as the basis for a general schedulability test:
– Find the critical instant when the system is most loaded, and has its worst

response time
– Use time demand analysis to determine if the system is schedulable at that

instant
– Prove that, if a fixed-priority system is schedulable at the critical instant, it

is always schedulable

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Finding the Critical Instant

• A critical instant for a job is the worst-case release time for that
job, taking into account all jobs that have higher priority
– i.e. a job released at the same instant as all jobs with higher priority are

released, and must wait for all those jobs to complete before it executes
– The response time of a job in Ti released at a critical instant is called the

maximum (possible) response time, and is denoted by Wi

• The schedulability test involves checking each task in turn, to
verify that it can be scheduled when started at a critical instant
– If schedulable at all critical instants, will work at other times
– More work than the test for maximum schedulable utilization, but less than

an exhaustive simulation

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Finding the Critical Instant

• A critical instant of a task Ti is a time instant such that:
If wi,k ≤ Di,k for every Ji,k in Ti then

The job released at that instant has the
maximum response time of all jobs in Ti
and Wi = wi,k

else if ∃ Ji,k : wi,k > Di,k then
The job released at that instant has response
time > D

where wi,k is the response time of the job

• Theorem: In a fixed-priority system where every job completes
before the next job in the same task is released, a critical instant
occurs when one of its jobs Ji,c is released at the same time with
a job from every higher-priority task.
– Intuitively obvious, but proved in the book

All jobs meet deadlines,
but this instant is when
the job with the slowest
response is started

If some jobs don’t meet
deadlines, this is one of
those jobs

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Finding the Critical Instant: Example

• 3 tasks scheduled using rate-monotonic
• Response times of jobs in T2 are:

r2,1 = 0.8, r2,3 = 0.3, r2,3 = 0.2, r2,4 = 0.3, r2,5 = 0.8, …
Therefore critical instants of T2 are t = 0 and t = 10

0 1 2 3 4 5 6 7 8 9 10 11 12

T1 = (2.0, 0.6)

T2 = (2.5, 0.2)

T3 = (3.0, 1.2)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Using the Critical Instant

• Having determined the critical instants, show that for each job Ji,c
released at a critical instant, that job and all higher priority tasks
complete executing before their relative deadlines

• If so, the entire system be schedulable…

• That is: don’t simulate the entire system, simply show that it has
correct characteristics following a critical instant
– This process is called time demand analysis

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Time-Demand Analysis

• Compute the total demand for processor time by a job released at
a critical instant of a task, and by all the higher-priority tasks, as a
function of time from the critical instant

• Check if this demand can be met before the deadline of the job:
– Consider one task, Ti, at a time, starting highest priority and working down

to lowest priority
– Focus on a job, Ji, in Ti, where the release time, t0, of that job is a critical

instant of Ti

– At time t0 + t for t ≥ 0, the processor time demand wi(t) for this job and all
higher-priority jobs released in [t0, t] is:

!

wi(t) = ei +
t

pk

"

$

%
% ek

k=1

i&1

' for 0 < t (pi

Execution time
of job Ji

Execution time of higher priority
jobs started during this interval

wi(t) = the time-
demand function

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Time-Demand Analysis

• Compare the time demand, wi(t), with the available time, t:
– If wi(t) ≤ t for some t ≤ Di, the job, Ji, meets its deadline, t0 + Di

– If wi(t) > t for all 0 < t ≤ Di then the task probably cannot complete by its
deadline; and the system likely cannot be scheduled using a fixed priority
algorithm

• Note that this is a sufficient condition, but not a necessary condition.
Simulation may show that the critical instant never occurs in practice, so the
system could be feasible…

• Use this method to check that all tasks are schedulable if released
at their critical instants; if so conclude the entire system can be
scheduled

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Time-Demand Analysis: Example

0 2 4 6 8 10
0

2

4

6

8

10

Time, t

Ti
m

e-
de

m
an

d
fu

nc
tio

n,
 w

i(t
)

w1(t)

w2(t)

w3(t)

t

Deadline for J1,1

Deadline for J2,1

Deadline for J3,1

Rate Monotonic:
T1 = (3, 1), T2 = (5, 2), T3 = (10, 2)
U = 0.933

The time-demand functions
w1(t), w2(t) and w3(t) are
not above t at their deadline
⇒ system can be scheduled

J3,1 starts with a time
demand of 5 units: 2
for itself, 2 for J2,1,
1 for J1,1

Exercise: simulate the
system to check this!

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Time-Demand Analysis

• The time-demand function wi(t) is a staircase function
– Steps in the time-demand for a task occur at multiples of the period for

higher-priority tasks
– The value of wi(t) – t linearly decreases from a step until the next step

• If our interest is the schedulability of a task, it suffices to check if
wi(t) ≤ t at the time instants when a higher-priority job is released

• Our schedulability test becomes:
– Compute wi(t)
– Check whether wi(t) ≤ t is satisfied at any of the instants t = j⋅pk

where k = 1, 2, …, i
j = 1, 2, …, min(pi, Di)/pk

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Time-Demand Analysis: Summary

• Time-demand analysis schedulability test is more complex than
the schedulable utilization test, but more general
– Works for any fixed-priority scheduling algorithm, provided the tasks have

short response time (i.e. pi < Di)
– Can be extended to tasks with arbitrary deadlines (see book)
– Only a sufficient test: guarantees that schedulable results are correct, but

requires further testing to validate a result of not schedulable

• Alternative approach: simulate the behaviour of tasks released at
the critical instants, up to the largest period of the tasks
– Still involves simulation, but less complex than an exhaustive simulation of

the system behaviour
– Worst-case simulation method

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Practical Factors

• We have assumed that:
– Jobs are preemptable at any time
– Jobs never suspend themselves
– Each job has distinct priority
– The scheduler is event driven and acts immediately

• These assumptions are often not valid… how does this affect the
system?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Blocking and Priority Inversion

• A ready job is blocked when it is prevented from executing by a
lower-priority job; a priority inversion is when a lower-priority
job executes while a higher-priority job is blocked

• These occur because some jobs cannot be pre-empted:
– Many reasons why a job may have non-preemptable sections

• Critical section over a resource
• Some system calls are non-preemptable
• Disk scheduling

– If a job becomes non-preemptable, priority inversions may occur, these
may cause a higher priority task to miss its deadline

– When attempting to determine if a task meets all of its deadlines, must
consider not only all the tasks that have higher priorities, but also non-
preemptable regions of lower-priority tasks

• Add the blocking time in when calculating if a task is schedulable

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Self-Suspension and Context Switches

• Self-suspension
– A job may invoke an external operation (e.g. request an I/O operation),

during which time it is suspended
– This means the task is no longer strictly periodic… again need to take into

account self-suspension time when calculating a schedule

• Context Switches
– Assume maximum number of context switches Ki for a job in Ti is known;

each takes tCS time units
– Compensate by setting execution time of each job, eactual = e + 2tCS

(more if jobs self-suspend, since additional context switches)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Tick Scheduling

• All of our previous discussion of priority-driven scheduling was
driven by job release and job completion events

• Alternatively, can perform priority-driven scheduling at periodic
events (timer interrupts) generated by a hardware clock
– i.e. tick (or time-based) scheduling

• Additional factors to account for in schedulability analysis
– The fact that a job is ready to execute will not be noticed and acted upon

until the next clock interrupt; this will delay the completion of the job
– A ready job that is yet to be noticed by the scheduler must be held

somewhere other than the ready job queue, the pending job queue
– When the scheduler executes, it moves jobs in the pending queue to the

ready queue according to their priorities; once in ready queue, the jobs
execute in priority order

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Practical Factors

• Clear that non-ideal behaviour can affect the schedulability of a
system

• Have touched on how – more details later in the module

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Have discussed fixed-priority scheduling of periodic tasks:
– Optimality of RM and DM
– More general schedulability tests and time-demand analysis

• Outlined practical factors that affect real-world periodic systems

• Tutorial tomorrow will recap the material from lectures 5 and 6

• Problem set 2 now available: due at 1:00pm on 2nd February

