Priority-driven Scheduling of
Periodic Tasks (1)

Real-Time and Embedded Systems (M)

Lecture 5

UNIVERSITY E
of
GLASGOW N\

Lecture Outline

Assumptions

Fixed-priority algorithms
— Rate monotonic
— Deadline monotonic

Dynamic-priority algorithms
— Earliest deadline first
— Least slack time

Relative merits of fixed- and dynamic-priority scheduling

Schedulable utilization and proof of schedulability

Material in lectures 5 & 6 corresponds to chapter 6 of Liu’s book

Assumptions

 Priority-driven scheduling of periodic tasks on a single processor

e Assume a restricted periodic task model:

— A fixed number of independent periodic tasks exist

» Jobs comprising those tasks:
— Are ready for execution as soon as they are released
— Can be pre-empted at any time
— Never suspend themselves

« New tasks only admitted after an acceptance test; may be rejected
* The period of a task defined as minimum inter-release time of jobs in task

— There are no aperiodic or sporadic tasks

— Scheduling decisions made immediately upon job release and completion
« Algorithms are event driven, not clock driven

« Never intentionally leave a resource idle

— Context switch overhead negligibly small; unlimited priority levels

Dynamic versus Static Systems

 Recall from lecture 3:

— Ifjobs are scheduled on multiple processors, and a job can be dispatched to
any of the processors, the system 1s dynamic

— If jobs are partitioned into subsystems, each subsystem bound statically to
a processor, we have a static system

— Difficult to determine the best- and worst-case performance of dynamic
systems, so most hard real-time systems built are static
 In static systems, the scheduler for each processor schedules the
jobs 1n its subsystem independent of the schedulers for the other
Processors

=> Results demonstrated for priority-driven uniprocessor systems are
applicable to each subsystem of a static multiprocessor system

— They are not applicable to dynamic multiprocessor systems

Fixed- and Dynamic-Priority Algorithms

* A priority-driven scheduler 1s an on-line scheduler

— It does not pre-compute a schedule of tasks/jobs: instead assigns priorities
to jobs when released, places them on a run queue in priority order

— When pre-emption is allowed, a scheduling decision is made whenever a
job 1s released or completed

— At each scheduling decision time, the scheduler updates the run queues and
executes the job at the head of the queue

« Jobs in a task may be assigned the same priority (task level fixed-
priority) or different priorities (task level dynamic-priority)

* The priority of each job is usually fixed (job level fixed-priority);
but some systems can vary the priority of a job after it has started
(job level dynamic-priority)

— Job level dynamic-priority usually very inefficient

Rate Monotonic Scheduling

Best known fixed-priority algorithm 1s rate monotonic scheduling

Assigns priorities to tasks based on their periods
— The shorter the period, the higher the priority

— The rate (of job releases) is the inverse of the period, so jobs with higher
rate have higher priority

Very widely studied and used

For example, consider a system of 3 tasks:

- T,=@4,1) = rate = !/,
- T,=(5,2) = rate = !/,
— T, =(20,5) = rate = !/,

— Relative priorities: T, > T, > T,

Example: Rate Monotonic Scheduling

Time Ready to run Running Time Ready to run Running
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
é Ji1 J_1,2 J_1,3 J_1,4 J_1,5 T, = 4, 1)
s 7 I S R R N 0
T, = (20, 5)
0 4 8 12 16 20 g

Deadline Monotonic Scheduling

* The deadline monotonic algorithm assigns task priority according
to relative deadlines — the shorter the relative deadline, the higher

the priority
* When relative deadline of every task matches its period, then rate
monotonic and deadline monotonic give identical results

* When the relative deadlines are arbitrary:

— Deadline monotonic can sometimes produce a feasible schedule in cases
where rate monotonic cannot

— But, rate monotonic always fails when deadline monotonic fails

« Deadline monotonic preferred to rate monotonic
— If deadline = period

Dynamic-Priority Algorithms

* Discussed several dynamic-priority algorithms in lecture 3:

— Earliest deadline first (EDF)

« The job queue 1s ordered by earliest deadline
— Least slack time first (LST)

* The job queue 1s ordered by least slack time

 Two variations:

— Strict LST — scheduling decisions are made also whenever a queued job’s slack
time becomes smaller than the executing job’s slack time — huge overheads, not

used
— Non-strict LST — scheduling decisions made only when jobs release or complete

— First 1n, first out (FIFO)
« Job queue is first-in-first-out by release time

— Last in, first out (LIFO)

« Job queue is last-in-first-out by release time

* Focus on EDF as commonly used example

Example: Earliest Deadline First

Time Ready to run Running Time Ready to run Running
B J J J J J J
o Y1 1,2 1,3 1,4 1,5 1,6 =
S L b by |pse)
ch C [T=6,29)
all

2 1 2 2 2 1 1 1 >

0 1 2 4 5 6 7 8 9 10

Relative Merits

* Fixed- and dynamic-priority scheduling algorithms have different
properties; neither appropriate for all scenarios

« Algorithms that do not take into account the urgencies of jobs in
priority assignment usually perform poorly
— E.g FIFO, LIFO

« The EDF algorithm gives higher priority to jobs that have missed
their deadlines than to jobs whose deadline is still in the future
— Not necessarily suited to systems where occasional overload unavoidable
* Dynamic algorithms like EDF can produce feasible schedules in
cases where RM and DM cannot

— But fixed priority algorithms often more predictable, lower overhead

Example: Comparing Different Algorithms

* Compare performance of RM, EDF, LST and FIFO scheduling

* Assume a single processor system with 2 tasks:
o Tl - (29 1)
~ T, =(5,2.5) H=10

 The total utilization i1s 1.0 = no slack time
— Expect some of these algorithms to lead to missed deadlines!
— This 1s one of the cases where EDF works better than RM/DM

Example: RM, EDF, LST and FIFO

J J J J J
Deadlines "' L2 I i A J1,5
2,1 - - 2,2

FIFOI Jia I .J2,1 J.1,3 I . J22 m J14 I Jis I

LST I Jia I Joi | Ji2 J-1,3 IJz,zi Ji4 I J22 I Jis I J22 I
EDF I Ji I Jo I Jia J.1,3 IJz,zi Ji4 I J2n I Jis I J2n |
RM I Ji I Jo I Jio I Jo I Ji3 %Jz 1 IJz 2| Ji4 I Joo I Jis I Joo I

0 2 4 6 8 10

* Demonstrate by exhaustive simulation that LST and EDF meet
deadlines, but FIFO and RM don’t

Schedulability Tests

« Simulating schedules 1s both tedious and error-prone... can we
demonstrate correctness without working through the schedule?

* Yes, in some cases. This 1s a schedulability test

— A test to demonstrate that all deadlines are met, when scheduled using a
particular algorithm

— An efficient schedulability test can be used as an on-line acceptance test;
clearly exhaustive simulation is too expensive

Schedulable Utilization

* Recall: a periodic task 7 1s defined by the 4-tuple (¢, p,, e;, D,)
with utilization u; = e, / p,
 Total utilization of the system U = E’_l_l u, where 0 <U<1

* A scheduling algorithm can feasibly schedule any system of
periodic tasks on a processor if U is equal to or less than the
maximum schedulable utilization of the algorithm, U,

— It U, =1, the algorithm 1s optimal

* Why is knowing of U, ; important? It gives a schedulability test,
where a system can be validated by showing that U< U,

Schedulable Utilization: EDF

* Theorem: a system of independent preemptable periodic tasks
with D, = p. can be feasibly scheduled on one processor using
EDF ifand only if U< 1

— Ugpr=1 for independent, preemptable periodic tasks with D, = p,

[Expected since EDF proved optimal
in lecture 3 — see the book for proof]

— Corollary: result also holds 1f deadline longer than period: Uy, =1 for
independent preemptable periodic tasks with D, > p.

* Notes:
— Result 1s independent of ¢,
— Result can also be shown to apply to strict LST

Schedulable Utilization: EDF

* What happens if D, < p, for some i? The test doesn’t work...
— E.g T,=(2,08), T,=(5,2.3,3)
r— J,1 1s preempted and misses deadline

|J1,1| D1 |J1,2|J2,1 ||J1,3|| Jr2 |J1,4| Jr2 >
0 1 2 3 4 5 6 7

 However, there is an alternative test:
— The density of the task, 7', is 6, = e,/ min(D,, p;)
— The density of the systemis A=0,+9,+ ... + 0,

— Theorem: A system T of independent, preemptable periodic tasks can be
feasibly scheduled on one processor using EDT if A < 1.

 Note:

— This 1s a sufficient condition, but not a necessary condition — i.e. a system
1s guaranteed to be feasible if A <1, but might still be feasible if A > 1
(would have to run the exhaustive simulation to prove)

Schedulable Utilization: EDF

 How can you use this in practice?
— Assume using EDF to schedule multiple periodic tasks, known execution
time for all jobs
=> Choose the periods for the tasks such that the schedulability test is met

« Example: a simple digital controller:

— Control-law computation task, 7, takes e, = 8 ms, sampling rate 1s 100 Hz
(1.e. p; = 10 ms)
= u, 15 0.8
=> the system is guaranteed to be schedulable

— Want to add a built-in self test task, 7, taking 5S0ms - will the system still
work?

Schedulable Utilization

of RM

* Theorem: a system of n independent preemptable periodic tasks
with D, = p. can be feasibly scheduled on one processor using RM

if and only if U < n-(2V" - 1)

\U,,,(0)
— Upy(n) =n-(2"—1) 0.9}
— Forlargen — In 2
(1.e.n — 0.69314718056...) 0.8

— [Proof in book - complicated!] 0.7f

0.6

N

—— —— —— 7
2 4 6 88 10 12 14 16 18

— U< Uy,(n) is a sufficient, but not necessary, condition —i.e. a feasible rate
monotonic schedule 1s guaranteed to exist if U < Uy, (n), but might still be

possible if U > Uy, (n)

Schedulable Utilization of RM

« What happens if the relative deadlines for tasks are not equal to
their respective periods?

* Assume the deadline 1s some multiple v of the period: D, =v-p,

e [t can be shown that:

v O=v=<0.5
U,y (n,0) =1 n((ZU)%—1)+1—v for 0.5=sv =l

V-1
U(n—l)(v+1) _1} v=273..

(¥

Schedulable Utilization of RM

n v=40 | v=30 | v=20 | v=10 | v=09 | v=08 | v=0.7 | v=0.6 | v=0.5
2 0.944 0.928 0.898 0.828 0.783 0.729 0.666 0.590 0.500
3 0.926 0.906 0.868 0.779 0.749 0.708 0.656 0.588 0.500
4 0.917 0.894 0.853 0.756 0.733 0.698 0.651 0.586 0.500
5 0.912 0.888 0.844 0.743 0.723 0.692 0.648 0.585 0.500
6 0.909 0.884 0.838 0.734 0.717 0.688 0.646 0.585 0.500
7 0.906 0.881 0.834 0.728 0.713 0.686 0.644 0.584 0.500
8 0.905 0.878 0.831 0.724 0.709 0.684 0.643 0.584 0.500
9 0.903 0.876 0.829 0.720 0.707 0.682 0.642 0.584 0.500
00 0.892 0.863 0.810 0.693 0.687 0.670 0.636 0.582 0.500
< >

D.> p.=> Schedulable
utilization increases

D.< p,=> Schedulable
utilization decreases

D;=p,

Summary

Key points:

 Different priority scheduling algorithms
— Earliest deadline first, least slack time, rate monotonic, deadline monotonic
— Each has different properties, suited for different scenarios

* Scheduling tests, concept of maximum schedulable utilization

— Examples for different algorithms

Next lecture: practical factors, more schedulability tests...

