
A Reference Model for Real-Time
Systems

Real-Time and Embedded Systems (M)
Lecture 2

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Why a reference model?
• Jobs and tasks
• Processors and resources
• Time and timing constraints

– Hard real-time
– Soft real-time

• Periodic, aperiodic and sporadic tasks
• Precedence constraints and dependencies
• Scheduling

Material corresponds to chapters 2 and 3 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

A Reference Model of Real-Time Systems

• Want to develop a model to let us reason about real-time systems
– Consistent terminology
– Lets us to focus on the important aspects of a system while ignoring the

irrelevant properties and details

• Our reference model is characterized by:
– A workload model that describes the applications supported by the system
– A resource model that describes the system resources available to the

applications
– Algorithms that define how the application system uses the resources at all

times

• Today: focus on the first two elements of the reference model
– The remainder of the module will study the algorithms, using the

definitions from this lecture

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Jobs and Tasks

• A job is a unit of work that is scheduled and executed by a system
– e.g. computation of a control-law, computation of an FFT on sensor data,

transmission of a data packet, retrieval of a file

• A task is a set of related jobs which jointly provide some function
– e.g. the set of jobs that constitute the “maintain constant altitude” task,

keeping an airplane flying at a constant altitude

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Processors and Resources

• A job executes – or is executed by the operating system – on a
processor and may depend on some resources

• A processor, P, is an active component on which jobs scheduled
– Examples:

• Threads scheduled on a CPU
• Data scheduled on a transmission link
• Read/write requests scheduled to a disk
• Transactions scheduled on a database server

– Each processor has a speed attribute which determines the rate of progress
a job makes toward completion

• May represent instructions-per-second for a CPU, bandwidth of a network, etc.
– Two processors are of the same type if they are functionally identical and

can be used interchangeably
• A resource, R, is a passive entity upon which jobs may depend

– E.g. memory, sequence numbers, mutexes, database locks, etc.
– Resources have different types and sizes, but do not have a speed attribute
– Resources are usually reusable, and are not consumed by use

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Use of Resources

• If the system contains ρ (“rho”) types of resource, this means:
– There are ρ different types of serially reusable resources
– There are one or more units of each type of resource, only one job can use

each unit at once (mutually exclusive access)
– A job must obtain a unit of a needed resource, use it, then release it

• A resource is plentiful if no job is ever prevented from executing
by the unavailability of units of the resource
– Jobs never block when attempting to obtain a unit of a plentiful resource
– We typically omit such resources from our discussion, since they don’t

impact performance or correctness

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Execution Time

• A job Ji will execute for time ei
– This is the amount of time required to complete the execution of Ji when it

executes alone and has all the resources it needs
– Value of ei depends upon complexity of the job and speed of the processor

on which it is scheduled; may change for a variety of reasons:
• Conditional branches
• Cache memories and/or pipelines
• Compression (e.g. MPEG video frames)

– Execution times fall into an interval [ei
−, ei

+]; assume that we know this
interval for every hard real-time job, but not necessarily the actual ei

• Terminology: (x, y] is an interval starting immediately after x, continuing up to
and including y

• Often, we can validate a system using ei
+ for each job; we assume

ei = ei
+ and ignore the interval lower bound

– Inefficient, but safe bound on execution time

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Release and Response Time

• Release time – the instant in time when a job becomes available
for execution
– May not be exact: Release time jitter so ri is in the interval [ri

−, ri
+]

– A job can be scheduled and executed at any time at, or after, its release
time, provided its resource dependency conditions are met

• Response time – the length of time from the release time of the
job to the time instant when it completes
– Not the same as execution time, since may not execute continually

Job, Ji Time

Release time, ri

Response time

ri
+ri

−

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Deadlines and Timing Constraints

• Completion time – the instant at which a job completes execution
• Relative deadline – the maximum allowable job response time
• Absolute deadline – the instant of time by which a job is required

to be completed (often called simply the deadline)
– absolute deadline = release time + relative deadline
– Feasible interval for a job Ji is the interval (ri, di]

• Deadlines are examples of timing constraints

Job, Ji Time

Response time

Relative deadline, Di

Absolute deadline, di

Completion time

ri
+ri

−

Release time, ri

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example

• A system to monitor and control a heating furnace
• The system takes 20ms to initialize when turned on
• After initialization, every 100 ms, the system:

– Samples and reads the temperature sensor
– Computes the control-law for the furnace to process temperature readings,

determine the correct flow rates of fuel, air and coolant
– Adjusts flow rates to match computed values

• The periodic computations can be stated in terms of release times
of the jobs computing the control-law: J0, J1, …, Jk, …
– The release time of Jk is 20 + (k × 100) ms

J0

Time (ms)
0 20 120 220 320 420

J1 J2 J3 Release Time

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example

• Suppose each job must complete before the release of the next
job:
– Jk’s relative deadline is 100 ms
– Jk’s absolute deadline is 20 + ((k + 1) × 100) ms

• Alternatively, each control-law computation may be required to
finish sooner – i.e. the relative deadline is smaller than the time
between jobs, allowing some slack time for other jobs

J0

Time (ms)
0 20 120 220 320 420

J1 J2 J3 Release Time

Relative deadline = 100ms
Absolute deadline

for J1 = 220ms
Slack time

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Hard vs. Soft Real-Time Systems

• The firmness of timing constraints affects how we reason about,
and engineer, the system

• If a job must never miss its deadline, then the system is described
as hard real-time
– A timing constraint is hard if the failure to meet it is considered a fatal

error; this definition is based upon the functional criticality of a job
– A timing constraint is hard if the usefulness of the results falls off abruptly

(or may even go negative) at the deadline
– A timing constraint is hard if the user requires validation (formal proof or

exhaustive simulation) that the system always meets its timing constraint

• If some deadlines can be missed occasionally, with acceptably
low probability, then the system is described as soft real-time
– This is a statistical constraint

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Hard vs. Soft Real-Time Systems

• Note: there may be no advantage in completing a job early
– It is often better to keep jitter (variation in timing) in the response times of

a stream of jobs small

• Timing constraints can be expressed in many ways:
– Deterministic

• e.g. the relative deadline of every control-law computation is 50 ms; the
response time of at most 1 out of 5 consecutive control-law computations
exceeds 50ms

– Probabilistic
• e.g. the probability of the response time exceeding 50 ms is less than 0.2

– In terms of some usefulness function
• e.g. the usefulness of every control-law computation is at least 0.8

[In practice, usually deterministic constraints, since easy to validate]

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Examples: Hard & Soft Real-Time Systems

• Hard real-time:
– Flight control
– Railway signalling
– Anti-lock brakes
– Etc.

• Soft real-time:
– Stock trading system
– DVD player
– Mobile phone
– Etc.

Can you think of more examples?

Is the distinction always clear cut?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Types of Task

• There are various types of task
– Periodic
– Aperiodic
– Sporadic

• Different execution time patterns for the jobs in the task
• Must be modelled differently

– Differing scheduling algorithms
– Differing impact on system performance
– Differing constraints on scheduling

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Modelling Periodic Tasks

• A set of jobs that are executed repeatedly at regular time intervals
can be modelled as a periodic task

• Each periodic task Ti is a sequence of jobs Ji,1, Ji,2, …, Ji,n
– The phase of a task Ti is the release time ri,1 of the first job Ji,1 in the task.

It is denoted by ϕi (“phi”)

– The period pi of a task Ti is the minimum length of all time intervals
between release times of consecutive jobs

– The execution time ei of a task Ti is the maximum execution time of all
jobs in the periodic task

– The period and execution time of every periodic task in the system are
known with reasonable accuracy at all times

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Modelling Periodic Tasks

• The hyper-period of a set of periodic tasks is the least common
multiple of their periods: H = lcm(pi) for i = 1, 2, …, n
– Time after which the pattern of job release/execution times starts to repeat,

limiting analysis needed

• Example:
– T1 : p1 = 3, e1 = 1
– T2 : p2 = 5, e2 = 2

H = lcm(3, 5) = 15

Time
0 5 10 15 20 25 30

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2 J2,2 J2,3

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Modelling Periodic Tasks

• The ratio ui = ei/pi is the utilization of task Ti
– The fraction of time a periodic task with period pi and execution time ei

keeps a processor busy

• The total utilization of a system is the sum of the utilizations of
all tasks in a system: U = ∑ ui

• We will usually assume the relative deadline for the jobs in a task
is equal to the period of the task
– It can sometimes be shorter than the period, to allow slack time

⇒Many useful, real-world, systems fit this model; and it is easy to
reason about such periodic tasks

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Responding to External Events

• Many real-time systems are required to respond to external events
• The jobs resulting from such events are sporadic or aperiodic jobs

– A sporadic job has a hard deadlines
– An aperiodic job has either a soft deadline or no deadline

• The release time for sporadic or aperiodic jobs can be modelled as
a random variable with some probability distribution, A(x)
– A(x) gives the probability that the release time of the job is not later than x

• Alternatively, if discussing a stream of similar sporadic/aperiodic
jobs, A(x) can be viewed as the probability distribution of their
inter-release times

[Note: sometimes the terms arrival time (or inter-arrival time) are used instead of release
time, due to their common use in queuing theory]

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Modelling Sporadic and Aperiodic Tasks

• A set of jobs that execute at irregular time intervals comprise a
sporadic or aperiodic task
– Each sporadic/aperiodic task is a stream of sporadic/aperiodic jobs

• The inter-arrival times between consecutive jobs in such a task
may vary widely according to probability distribution A(x) and
can be arbitrarily small

• Similarly, the execution times of jobs are identically distributed
random variables with some probability distribution B(x)

⇒Sporadic and aperiodic tasks occur in some real-time systems,
and greatly complicate modelling and reasoning

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Precedence Constraints and Dependencies

• The jobs in a task, whether periodic, aperiodic or sporadic, may
be constrained to execute in a particular order
– This is known as a precedence constraint
– A job Ji is a predecessor of another job Jk (and Jk a successor of Ji) if Jk

cannot begin execution until the execution of Ji completes
• Denote this by saying Ji < Jk

– Ji is an immediate predecessor of Jk if Ji < Jk and there is no other job Jj
such that Ji < Jj < Jk

– Ji and Jk are independent when neither Ji < Jk nor Jk < Ji

• A job with a precedence constraint becomes ready for execution
once when its release time has passed and when all predecessors
have completed

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Task Graphs

• Can represent the precedence constraints among jobs in a set J using a directed
graph G = (J, <); each node represents a job represented; a directed edge goes
from Ji to Jk if Ji is an immediate predecessor of Jk

(0,7] (2,9] (4,11] (6,13] (8,15]

Feasible
intervals

Independent Periodic jobs
p=2, D=7

(2,5] (5,8] (8,11] (11,14] (14,17] Periodic jobs, dependent
on immediate predecessor

ϕ=2, p=3, D=3

(0,5]

(0,6]

1/22/3

Conditional block

branch join

(4,8] (5,20]

(2,10]

Jobs with
complex
dependencies

AND

OR Producer-Consumer

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Task Graphs: Dependencies & Constraints

• Normally a job must wait for the completion of all immediate
predecessors; an AND constraint
– Unfilled circle in the task graph

• An OR constraint indicates that a job may begin after its release
time if only some of the immediate predecessors have completed
– Unfilled squares in the task graph

• Represent conditional branches and joins by filled in circles
• Represent a pair of producer/consumer jobs with a dotted edge

• Use to visualise structure of real time systems

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Functional Parameters

• Jobs may have priority, and in some cases may be interrupted by
a higher priority job
– A job is preemptable if its execution can be interrupted in this manner
– A job is non-preemptable if it must run to completion once started

• Many preemptable jobs have periods during which they cannot be preempted;
for example when accessing certain resources

– The ability to preempt a job (or not) impacts the scheduling algorithm
– The context switch time is the time taken to switch between jobs

• Forms an overhead that must be accounted for when scheduling jobs

• Response to missing a deadline can vary
– Some jobs have optional parts, that can be omitted to save time (at the

expense of a poorer quality result)
– Usefulness of late results varies; some applications tolerate some delay,

others do not

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduling

• Jobs scheduled and allocated resources according to a chosen set
of scheduling algorithms and resource access-control protocols
– Scheduler implements these algorithms

• A scheduler specifically assigns jobs to processors
• A schedule is an assignment of all jobs in the system on the

available processors.
• A valid schedule satisfies the following conditions:

– Every processor is assigned to at most one job at any time
– Every job is assigned at most one processor at any time
– No job is scheduled before its release time
– The total amount of processor time assigned to every job is equal to its

maximum or actual execution time
– All the precedence and resource usage constraints are satisfied

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduling

• A valid schedule is also a feasible schedule if every job meets its
timing constraints.
– Miss rate is the percentage of jobs that are executed but completed too late
– Loss rate is the percentage of jobs that are not executed at all

• A hard real time scheduling algorithm is optimal if the algorithm
always produces a feasible schedule if the given set of jobs has
feasible schedules

• Many scheduling algorithms exist: main focus of this module is
understanding real-time scheduling

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Outline of terminology and a reference model:
– Jobs and tasks
– Processors and resources
– Time and timing constraints

• Hard real-time
• Soft real-time

– Periodic, aperiodic and sporadic tasks
– Precedence constraints and dependencies
– Scheduling

