
Introduction to Real-Time Systems

Real-Time and Embedded Systems (M)
Lecture 1



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Administrivia
– Aims and objectives
– Intended learning outcomes
– Prerequisites
– Module outline and timetable
– Reading list
– Assessment

• Introduction to real-time systems
– Examples
– Types of real-time system
– Implementation considerations



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Lecturer Contact Details

Dr. Colin Perkins
Sir Alwyn Williams Building, room 405

Email: csp@dcs.gla.ac.uk

http://fims.moodle.gla.ac.uk/course/view.php?id=136

Willing to discuss the module and answer
questions – make appointments by email



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Aims of This Module

• To introduce and explore the programming language and
operating systems facilities essential to the implementation
of real-time, reactive, embedded and networked systems.

• To provide the participants with an understanding of the practical
engineering issues raised by the design and programming of real-
time, reactive, embedded and networked systems.



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Intended Learning Outcomes

• By the end of this module participants should be able to:
– Clearly differentiate the different issues that arise in designing soft and

hard real-time, concurrent, reactive, safety-critical and embedded systems.
– Explain the various concepts of time that arise in real-time systems.
– Analyse and apply a variety of static and dynamic scheduling mechanisms

suitable for soft and hard real-time systems. Conduct simple performance
and schedulability analysis to demonstrate that a system can successfully
meet real-time constraints.

– Explain the additional problems that arise in developing distributed and
networked real-time systems.

– Describe the design and implementation of systems that support real-time
applications. Justify and critique facilities provided by real-time operating
systems and networks.

– Design, construct and analyse a small, concurrent, reactive, real-time
system. Select and use appropriate engineering techniques, and explain the
effect of your design decisions on the behaviour of the system.



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Prerequisites

• Students are expected to have done degree-level studies in, and
be familiar with, operating systems design and implementation,
concurrency and threaded programming, and software analysis
and design.

• Some basic familiarity with formal reactive systems modelling
techniques and safety critical system design would complement
the engineering issues addressed in this module
– The MRS4 and SCS4 modules cover that material, but are not formal co-

or pre-requisites



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Module Outline

• Introduction to Real-Time and Embedded Systems
– Reference Model
– Hard versus soft real-time

• Job Scheduling
– Clock driven scheduling algorithms
– Priority driven scheduling algorithms
– Schedulers in commodity and real-time operating systems

• Resource access control
– Algorithms
– Implementation

• Real-time communication
– On best-effort networks
– Enhanced quality of service

• Other implementation considerations



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Timetable

Tutorial 6 Lecture 18

Lecture 5

Lecture 20Lecture 1923

Lecture 1722

Individual work on programming assignment21

Lecture 16Lecture 15Tutorial 520

Lecture 14Lecture 13Tutorial 419

Lecture 12Lecture 11Lecture 1018

Lecture 9Tutorial 3Lecture 817

Lecture 7Tutorial 2Lecture 616

Lecture 4Tutorial 115

Lecture 3Lecture 2Lecture 114

Thu 10:00-11:00Wed 10:00-11:00Tue 14:00-15:00Week:



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Timetable

Priority-driven Scheduling of Periodic Tasks (1)
Clock-Driven Scheduling

Lecture 5

Real-Time on General Purpose SystemsLecture 12
Real-Time Operating Systems and Languages (2)Lecture 11
Real-Time Operating Systems and Languages (1)Lecture 10Week 18

Implementing Scheduling AlgorithmsLecture 9
Scheduling Algorithms (2)Tutorial 3
Priority-driven Scheduling of Aperiodic and Sporadic Tasks (2)Lecture 8Week 17
Priority-driven Scheduling of Aperiodic and Sporadic Tasks (1)Lecture 7
Scheduling Algorithms (1)Tutorial 2
Priority-driven Scheduling of Periodic Tasks (2)Lecture 6Week 16

Lecture 4
The Basics of Real-Time SystemsTutorial 1Week 15
Overview of Real-Time SchedulingLecture 3
A Reference Model for Real-Time SystemsLecture 2
Introduction to Real-Time SystemsLecture 1Week 14



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Timetable

Individual Work on Programming Assignment
Week 21

Review of Major ConceptsLecture 20
Low-Level and Embedded Programming (2)Lecture 19Week 23

Low-Level and Embedded Programming (1)Lecture 18
Real-Time Communications/Q&A on Programming AssignmentTutorial 6
Quality of Service for Packet NetworksLecture 17Week 22

Real-Time Communication on IP NetworksLecture 16
Introduction to Real-Time CommunicationsLecture 15
Resource Access ControlTutorial 5Week 20
Resource Access Control (2)Lecture 14
Resource Access Control (1)Lecture 13
Real-Time Operating Systems and LanguagesTutorial 4Week 19



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Lectures and Tutorials

• Lectures:
– Highlight relevant material from the book

• Tutorials:
– Practice problem solving, review material covered in lectures
– Expect to do worked examples and answer questions!



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Assessment

• Level M module, worth 10 credits
• 3 Problem sets (each worth 5% of total mark)

– Problem set 1: available in lecture 3, due 1:00pm on 26th January
– Problem set 2: available in lecture 6, due 1:00pm on 2nd February
– Problem set 3: available in lecture 8, due 1:00pm on 9th February

• Hard deadlines: late submissions will receive zero marks unless valid special
circumstances form submitted

• Programming assignment (15% of total mark)
– Available in lecture 15, due at 1pm on 16th March
– Will involve real-time network programming in C

• Written examination (70% of total mark)
– All material in the lectures, tutorials and background reading is examinable
– Aim is to test your understanding of the material, not to test your memory

of all the details; explain why – don’t recite what



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Reading

• Jane W. S. Liu, “Real-Time Systems”, Prentice-
Hall, 2000, ISBN 0130996513
– This book comprises the lecture notes for the module

and is required reading for all students
– All material in this book is examinable

• Bill Gallmeister, “POSIX.4: Programming for the
Real-World”, O’Reilly and Associates, 1995,
ISBN 1565920740
– Optional, but provides further detail on the practical

aspects of the module



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Real-Time and Embedded Systems

• A real-time system must deliver services in a timely manner
– Not necessarily fast, but must meet some timing deadline

• An embedded system is hidden from view within a larger system
• Many real-time and embedded systems exist, often without the

awareness of their users
– Washing machine, photocopier, mobile phone, car, aircraft, industrial

plant, microwave oven, toothbrush, CD player, medical devices, etc.

• Must be able to validate real-time systems for correctness
– Some embedded real-time systems are safety critical – i.e. if they do not

complete on a timely basis, serious consequences result
– Bugs in embedded real-time systems are often difficult or expensive to fix



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Real-Time and Embedded Systems

• This module will discuss several representative classes of real-
time and embedded system:
– Digital process control
– Higher-level command and control
– Tracking and signal processing
– Real-time databases
– Telephony and multimedia

• Algorithms for scheduling tasks such that those systems complete
in a reliable and timely fashion

• Implementation techniques, operating systems and languages for
building such systems



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Digital Process Control

• Controlling some device (the “plant”) using an actuator, based on
sampled sensor data
– y(t) is the measured state of the plant
– r(t) is the desired state of the plant
– Calculate control output u(t) as a function of y(t), r(t)

Sensor ActuatorPlant

control-law
computation

A/D

controller

yk

y(t) u(t)

reference
input: r(t) rk uk

A/D D/A



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Digital Process Control

• Pseudo-code for the controller:

set timer to interrupt periodically with period T;
at each timer interrupt, do

do analogue-to-digital conversion of y(t) to get yk;
compute control output uk based on reference rk and yk;
do digital-to-analogue conversion of uk to get u(t);

end do;

• Effective control of the plant depends on:
• The correct control law computation and reference input
• The accuracy of the sensor measurements:

• Resolution of the sampled data (i.e. bits per sample)
• Timing of the clock interrupts (i.e. samples per second, 1/T)



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Digital Process Control

• The time T between any two consecutive measurement of y(t), r(t)
is the sampling period
– Small T better approximates the analogue behaviour
– Large T means less processor-time demands
– Must achieve a compromise

• If T is too large, oscillation will result as the system tries to adapt

y(t)

u(t)

umax

-umax

0

Measured State Control Output

Desired
Large T



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Digital Process Control

• How to choose sampling period?
– Rise time – the amount of time that the plant takes to reach some small

neighbourhood around the final state in response to a step change in the
reference input

– If R is the rise time, and T is the period, a good rule of thumb is that the
ratio 10 ≤ R/T ≤ 20

• Must be chosen correctly, and accurately implemented to ensure
stability

• Multi-rate systems – system is composed of multiple sensors and
actuators, each of which require different sampling periods
– Need to run multiple control loops at once, accurately
– Usually best to have the sampling periods for the different degrees of

freedom related in a harmonic way



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Helicopter Flight Control

Do the following in each 1/180-second cycle:
• Validate sensor data and select data source; on failure reconfigure the system
• Do the following 30-Hz avionics tasks, each once every 6 cycles:

– Keyboard input and mode selection
– Data normalization and coordinate transformation
– Tracking reference update

• Do the following 30-Hz computations, each once every 6 cycles
– Control laws of the outer pitch-control loop
– Control laws of the outer roll-control loop
– Control laws of the outer yaw- and collective-control loop

• Do each of the following 90-Hz computations once every 2 cycles, using
outputs produced by the 30-Hz computations
– Control laws of the inner pitch-control loop
– Control laws of the inner roll- and collective-control loop

• Compute the control laws of the inner yaw-control loop, using outputs from the
90-Hz computations

• Output commands to control surfaces
• Carry out built-in-test



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Digital Process Control

• Digital controllers make three assumptions:
– Sensor data give accurate estimates of the state-variables being monitored

and controlled - noiseless
– The sensor data gives the state of the plant – usually must compute plant

state from measured values
– All parameters representing the dynamics of the plant are known

• If any of these assumptions are not valid, a digital controller must
include a model of the correct system behaviour
– Estimate actual state based on noisy measurement each iteration of the

control loop
– Use estimated plant state instead of measured state to derive control output
– Often requires complex calculation, modelling

• We’ll cover scheduling dynamics; the system model is domain-
specific



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Higher-Level Control

• Controllers often organized in a hierarchy
– Multiple control loops, higher level controllers monitoring the behaviour of

low-level controllers
– Time-scale, complexity of decision making, increases as go up hierarchy;

Move from control to planning

– Higher level planning must
still be done in real-time,
although deadlines are less
tight

State
Estimator

Flight
control

State
Estimator

State
Estimator

Air traffic
control

Flight
Management

Air data

Navigation



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Real-Time Communications

• Real-time systems are increasingly distributed, including
communication networks
– Control loop may include a communication step
– System may depend on network stimuli

• Not only does a system need to run a control law with time
constraints, it must also schedule communications, sending
and receiving messages according to deadlines



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Wheel
sensors

Steering Brake Accelerator Gears

Engine
sensors

Control
system

Controller
area network

Brake
actuator Engine

controls

Example: Drive by Wire

• All data must be delivered reliably
– Bad if you turn the steering wheel, and nothing happens

• Commands from control system have highest priority, then sensors and actuators, then
control inputs

– Anti-lock brakes have a faster response time than the driver, so prioritise to ensure the car
doesn’t skid

• Network must schedule and prioritise communications



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Packet switched
voice network

Example: Packet Voice

• Voice is digitised and sent as a sequence of packets
– Constant spacing, every 10-30ms depending on codec

• Strict timeliness requirement
– Mouth to ear delay needs to be less than approximately 150ms
– Packets must be played out with equal spacing

• Relaxed reliability requirement
– Some small fraction of packets can be lost, and just sound like crackles on

the wire; most need to arrive

• Emergency calls may have priority



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Types of Real-Time Application

• Purely cyclic
– Every task executes periodically
– Demands in (computing,

communication, and storage)
resources do not vary significantly
from period to period

– Example: most digital controllers
and real-time monitors

• Mostly cyclic
– Most tasks execute periodically
– The system must also respond to

some external events (fault
recovery and external commands)
asynchronously

– Example: modern avionics and
process control systems

• Asynchronous: mostly predictable
– Most tasks are not periodic
– The time between consecutive

executions of a task may vary
considerably, or the variations in
resource utilization in different
periods may be large

– These variations have either
bounded ranges or known statistics

• Asynchronous: unpredictable
– Applications that react to

asynchronous events and have tasks
with high run-time complexity

– Example: intelligent real-time
control systems



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Types of Real-Time Application

• As we will see later, the type of application affects how we
schedule tasks, prove correctness

• It is easier to reason about applications that are more cyclic,
synchronous and predictable
– Many real-time systems designed in this manner
– Safe, conservative, design approach, if it works for your application



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Implementation Considerations

• Some real-time embedded systems are complex, implemented on
high-performance hardware
– Industrial plant control
– Civilian flight control

• Many must be implemented on hardware chosen to be low cost,
low power, light-weight and robust; with performance a distant
concern
– Military flight control, space craft control
– Consumer goods

• Often-times implemented in C or assembler, fitting within a few
kilobytes of memory
– Correctness a primary concern, efficiency a close second



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Summary

• Outline of the module structure, assessment, etc.
• Introduction to real-time and embedded systems

– Examples of digital control, higher-level control, communication

• Types of real-time system
– Cyclic synchronous vs. asynchronous and unpredictable

• Implementation considerations

[Liu chapter 1]


