Priority-driven Scheduling of Periodic Tasks (1)

Real-Time and Embedded Systems (M)
Lecture 5
Lecture Outline

• Assumptions

• Fixed-priority algorithms
 – Rate monotonic
 – Deadline monotonic

• Dynamic-priority algorithms
 – Earliest deadline first
 – Least slack time

• Relative merits of fixed- and dynamic-priority scheduling

• Schedulable utilization and proof of schedulability

Material in lectures 5 & 6 corresponds to chapter 6 of Liu’s book
Assumptions

- Priority-driven scheduling of periodic tasks on a single processor
- Assume a restricted periodic task model:
 - A fixed number of independent periodic tasks exist
 - Jobs comprising those tasks:
 - Are ready for execution as soon as they are released
 - Can be pre-empted at any time
 - Never suspend themselves
 - New tasks only admitted after an acceptance test; may be rejected
 - The period of a task defined as minimum inter-release time of jobs in task
- There are no aperiodic or sporadic tasks
- Scheduling decisions made immediately upon job release and completion
 - Algorithms are event driven, not clock driven
 - Never intentionally leave a resource idle
- Context switch overhead negligibly small; unlimited priority levels
Dynamic versus Static Systems

• Recall from lecture 3:
 – If jobs are scheduled on multiple processors, and a job can be dispatched to any of the processors, the system is *dynamic*
 – If jobs are partitioned into subsystems, each subsystem bound statically to a processor, we have a *static* system
 – Difficult to determine the best- and worst-case performance of dynamic systems, so most hard real-time systems built are static

• In static systems, the scheduler for each processor schedules the jobs in its subsystem independent of the schedulers for the other processors

⇒ Results demonstrated for priority-driven uniprocessor systems are applicable to each subsystem of a static multiprocessor system
 – They are *not* applicable to dynamic multiprocessor systems
Fixed- and Dynamic-Priority Algorithms

• A priority-driven scheduler is an on-line scheduler
 – It does not pre-compute a schedule of tasks/jobs: instead assigns priorities to jobs when released, places them on a run queue in priority order
 – When pre-emption is allowed, a scheduling decision is made whenever a job is released or completed
 – At each scheduling decision time, the scheduler updates the run queues and executes the job at the head of the queue

• Jobs in a task may be assigned the same priority (task level fixed-priority) or different priorities (task level dynamic-priority)

• The priority of each job is usually fixed (job level fixed-priority); but some systems can vary the priority of a job after it has started (job level dynamic-priority)
 – Job level dynamic-priority usually very inefficient
Rate Monotonic Scheduling

• Best known fixed-priority algorithm is *rate monotonic* scheduling
• Assigns priorities to tasks based on their periods
 – The shorter the period, the higher the priority
 – The *rate* (of job releases) is the inverse of the period, so jobs with higher rate have higher priority
• Very widely studied and used

• For example, consider a system of 3 tasks:
 – $T_1 = (4, 1) \Rightarrow \text{rate} = \frac{1}{4}$
 – $T_2 = (5, 2) \Rightarrow \text{rate} = \frac{1}{5}$
 – $T_3 = (20, 5) \Rightarrow \text{rate} = \frac{1}{20}$

• Relative priorities: $T_1 > T_2 > T_3$
Example: Rate Monotonic Scheduling

<table>
<thead>
<tr>
<th>Time</th>
<th>Ready to run</th>
<th>Running</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Ready to run</th>
<th>Running</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Released
- $J_{1,1}$
- $J_{2,1}$
- $J_{3,1}$
- $J_{1,2}$
- $J_{2,2}$
- $J_{1,3}$
- $J_{2,3}$
- $J_{1,4}$
- $J_{2,4}$
- $J_{1,5}$

- $T_1 = (4, 1)$
- $T_2 = (5, 2)$
- $T_3 = (20, 5)$
Deadline Monotonic Scheduling

- The *deadline monotonic* algorithm assigns task priority according to relative deadlines – the shorter the relative deadline, the higher the priority.

- When relative deadline of every task matches its period, then rate monotonic and deadline monotonic give identical results.

- When the relative deadlines are arbitrary:
 - Deadline monotonic can sometimes produce a feasible schedule in cases where rate monotonic cannot
 - But, rate monotonic always fails when deadline monotonic fails

- Deadline monotonic preferred to rate monotonic
 - If deadline \neq period
Dynamic-Priority Algorithms

- Discussed several dynamic-priority algorithms in lecture 3:
 - Earliest deadline first (EDF)
 - The job queue is ordered by earliest deadline
 - Least slack time first (LST)
 - The job queue is ordered by least slack time
 - Two variations:
 - Strict LST – scheduling decisions are made also whenever a queued job’s slack time becomes smaller than the executing job’s slack time – *huge* overheads, not used
 - Non-strict LST – scheduling decisions made only when jobs release or complete
 - First in, first out (FIFO)
 - Job queue is first-in-first-out by release time
 - Last in, first out (LIFO)
 - Job queue is last-in-first-out by release time

- Focus on EDF as commonly used example
Example: Earliest Deadline First

<table>
<thead>
<tr>
<th>Time</th>
<th>Ready to run</th>
<th>Running</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Ready to run</th>
<th>Running</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$T_1 = (2, 1)$
$T_2 = (5, 2.5)$

$J_{1,1}$
$J_{2,1}$
$J_{1,2}$
$J_{1,3}$
$J_{2,2}$
$J_{1,4}$
$J_{1,5}$
$J_{1,6}$

$J_{2,3}$
Relative Merits

• Fixed- and dynamic-priority scheduling algorithms have different properties; neither appropriate for all scenarios

• Algorithms that do not take into account the urgencies of jobs in priority assignment usually perform poorly
 – E.g FIFO, LIFO

• The EDF algorithm gives higher priority to jobs that have missed their deadlines than to jobs whose deadline is still in the future
 – Not necessarily suited to systems where occasional overload unavoidable

• Dynamic algorithms like EDF can produce feasible schedules in cases where RM and DM cannot
 – But fixed priority algorithms often more predictable, lower overhead
Example: Comparing Different Algorithms

• Compare performance of RM, EDF, LST and FIFO scheduling
• Assume a single processor system with 2 tasks:
 – \(T_1 = (2, 1) \)
 – \(T_2 = (5, 2.5) \) \(H = 10 \)

• The total utilization is 1.0 \(\Rightarrow \) no slack time
 – Expect some of these algorithms to lead to missed deadlines!
 – This is one of the cases where EDF works better than RM/DM
Example: RM, EDF, LST and FIFO

- Demonstrate by exhaustive simulation that LST and EDF meet deadlines, but FIFO and RM don’t
Schedulability Tests

• Simulating schedules is both tedious and error-prone… can we demonstrate correctness without working through the schedule?

• Yes, in some cases. This is a schedulability test
 – A test to demonstrate that all deadlines are met, when scheduled using a particular algorithm
 – An efficient schedulability test can be used as an on-line acceptance test; clearly exhaustive simulation is too expensive
Schedulable Utilization

- Recall: a periodic task T_i is defined by the 4-tuple (ϕ_i, p_i, e_i, D_i) with utilization $u_i = e_i / p_i$
- Total utilization of the system $U = \sum_{i=1}^{n} u_i$ where $0 \leq U \leq 1$

- A scheduling algorithm can feasibly schedule any system of periodic tasks on a processor if U is equal to or less than the maximum schedulable utilization of the algorithm, U_{ALG}
 - If $U_{ALG} = 1$, the algorithm is optimal

- Why is knowing of U_{ALG} important? It gives a schedulability test, where a system can be validated by showing that $U \leq U_{ALG}$
Schedulable Utilization: EDF

- Theorem: a system of independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using EDF if and only if $U \leq 1$

 \[U_{EDF} = 1 \]

 [Expected since EDF proved optimal in lecture 3 – see the book for proof]

 - Corollary: result also holds if deadline longer than period: $U_{EDF} = 1$ for independent preemptable periodic tasks with $D_i \geq p_i$

- Notes:
 - Result is independent of ϕ_i
 - Result can also be shown to apply to strict LST
What happens if $D_i < p_i$ for some i? The test doesn’t work…
- E.g. $T_1 = (2, 0.8)$, $T_2 = (5, 2.3, 3)$

However, there is an alternative test:
- The density of the task, T_i, is $\delta_i = e_i / \min(D_i, p_i)$
- The density of the system is $\Delta = \delta_1 + \delta_2 + \ldots + \delta_n$
- Theorem: A system T of independent, preemptable periodic tasks can be feasibly scheduled on one processor using EDT if $\Delta \leq 1$.

Note:
- This is a sufficient condition, but not a necessary condition – i.e. a system is guaranteed to be feasible if $\Delta \leq 1$, but might still be feasible if $\Delta > 1$ (would have to run the exhaustive simulation to prove)
Schedulable Utilization: EDF

• How can you use this in practice?
 – Assume using EDF to schedule multiple periodic tasks, known execution
time for all jobs
 ⇒ Choose the periods for the tasks such that the schedulability test is met

• Example: a simple digital controller:
 – Control-law computation task, T_1, takes $e_1 = 8$ ms, sampling rate is 100 Hz
 (i.e. $p_1 = 10$ ms)
 ⇒ u_1 is 0.8
 ⇒ the system is guaranteed to be schedulable
 – Want to add a built-in self test task, T_2, taking 50ms - will the system still work?
Schedulable Utilization of RM

• Theorem: a system of n independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using RM if and only if $U \leq n \cdot (2^{1/n} - 1)$

 - $U_{RM}(n) = n \cdot (2^{1/n} - 1)$
 - For large $n \rightarrow \ln 2$ (i.e. $n \rightarrow 0.69314718056\ldots$)

 - [Proof in book - complicated!]

 - $U \leq U_{RM}(n)$ is a sufficient, but not necessary, condition – i.e. a feasible rate monotonic schedule is guaranteed to exist if $U \leq U_{RM}(n)$, but might still be possible if $U > U_{RM}(n)$
Schedulable Utilization of RM

- What happens if the relative deadlines for tasks are not equal to their respective periods?
- Assume the deadline is some multiple ν of the period: $D_k = \nu \cdot p_k$
- It can be shown that:

$$U_{RM}(n,\nu) = \begin{cases}
\nu & 0 \leq \nu \leq 0.5 \\
(n((2\nu)^\frac{1}{n} - 1) + 1 - \nu & 0.5 \leq \nu \leq 1 \\
\nu(n-1)\left[\left(\frac{\nu+1}{\nu}\right)^\frac{1}{n-1} - 1\right] & \nu = 2, 3, ...
\end{cases}$$
Schedulable Utilization of RM

<table>
<thead>
<tr>
<th>n</th>
<th>$v = 4.0$</th>
<th>$v = 3.0$</th>
<th>$v = 2.0$</th>
<th>$v = 1.0$</th>
<th>$v = 0.9$</th>
<th>$v = 0.8$</th>
<th>$v = 0.7$</th>
<th>$v = 0.6$</th>
<th>$v = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.944</td>
<td>0.928</td>
<td>0.898</td>
<td>0.828</td>
<td>0.783</td>
<td>0.729</td>
<td>0.666</td>
<td>0.590</td>
<td>0.500</td>
</tr>
<tr>
<td>3</td>
<td>0.926</td>
<td>0.906</td>
<td>0.868</td>
<td>0.779</td>
<td>0.749</td>
<td>0.708</td>
<td>0.656</td>
<td>0.588</td>
<td>0.500</td>
</tr>
<tr>
<td>4</td>
<td>0.917</td>
<td>0.894</td>
<td>0.853</td>
<td>0.756</td>
<td>0.733</td>
<td>0.698</td>
<td>0.651</td>
<td>0.586</td>
<td>0.500</td>
</tr>
<tr>
<td>5</td>
<td>0.912</td>
<td>0.888</td>
<td>0.844</td>
<td>0.743</td>
<td>0.723</td>
<td>0.692</td>
<td>0.648</td>
<td>0.585</td>
<td>0.500</td>
</tr>
<tr>
<td>6</td>
<td>0.909</td>
<td>0.884</td>
<td>0.838</td>
<td>0.734</td>
<td>0.717</td>
<td>0.688</td>
<td>0.646</td>
<td>0.585</td>
<td>0.500</td>
</tr>
<tr>
<td>7</td>
<td>0.906</td>
<td>0.881</td>
<td>0.834</td>
<td>0.728</td>
<td>0.713</td>
<td>0.686</td>
<td>0.644</td>
<td>0.584</td>
<td>0.500</td>
</tr>
<tr>
<td>8</td>
<td>0.905</td>
<td>0.878</td>
<td>0.831</td>
<td>0.724</td>
<td>0.709</td>
<td>0.684</td>
<td>0.643</td>
<td>0.584</td>
<td>0.500</td>
</tr>
<tr>
<td>9</td>
<td>0.903</td>
<td>0.876</td>
<td>0.829</td>
<td>0.720</td>
<td>0.707</td>
<td>0.682</td>
<td>0.642</td>
<td>0.584</td>
<td>0.500</td>
</tr>
<tr>
<td>∞</td>
<td>0.892</td>
<td>0.863</td>
<td>0.810</td>
<td>0.693</td>
<td>0.687</td>
<td>0.670</td>
<td>0.636</td>
<td>0.582</td>
<td>0.500</td>
</tr>
</tbody>
</table>

$D_i > p_i \Rightarrow$ Schedulable utilization increases

$D_i < p_i \Rightarrow$ Schedulable utilization decreases

$D_i = p_i$
Summary

Key points:
• Different priority scheduling algorithms
 – Earliest deadline first, least slack time, rate monotonic, deadline monotonic
 – Each has different properties, suited for different scenarios
• Scheduling tests, concept of maximum schedulable utilization
 – Examples for different algorithms

Next lecture: practical factors, more schedulability tests…