
Introduction to Real-Time Systems

Real-Time and Embedded Systems (M)
Lecture 1

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Administrivia
– Aims and objectives
– Intended learning outcomes
– Prerequisites
– Module outline and timetable
– Reading list
– Assessment

• Introduction to real-time systems
– Examples
– Types of real-time system
– Implementation considerations

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecturer Contact Details

Dr. Colin Perkins
Lilybank Gardens, room S154, but moving to
the Sir Alwyn Williams Building, room 405

Email: csp@dcs.gla.ac.uk

http://www.dcs.gla.ac.uk/~csp/teaching/rtes/

Willing to discuss the module and answer
questions – make appointments by email

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Aims of This Module

• To introduce and explore the programming language and
operating systems facilities essential to the implementation
of real-time, reactive, embedded and networked systems.

• To provide the participants with an understanding of the practical
engineering issues raised by the design and programming of real-
time, reactive, embedded and networked systems.

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Intended Learning Outcomes

• By the end of this module participants should be able to:
– Clearly differentiate the different issues that arise in designing soft and

hard real-time, concurrent, reactive, safety-critical and embedded systems.
– Explain the various concepts of time that arise in real-time systems.
– Analyse and apply a variety of static and dynamic scheduling mechanisms

suitable for soft and hard real-time systems. Conduct simple performance
and schedulability analysis to demonstrate that a system can successfully
meet real-time constraints.

– Explain the additional problems that arise in developing distributed and
networked real-time systems.

– Describe the design and implementation of systems that support real-time
applications. Justify and critique facilities provided by real-time operating
systems and networks.

– Design, construct and analyse a small, concurrent, reactive, real-time
system. Select and use appropriate engineering techniques, and explain the
effect of your design decisions on the behaviour of the system.

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Prerequisites

• Students are expected to have done degree-level studies in, and
be familiar with, operating systems design and implementation,
concurrency and threaded programming, and software analysis
and design.

• Some basic familiarity with formal reactive systems modelling
techniques and safety critical system design would complement
the engineering issues addressed in this module
– The MRS4 and SCS4 modules cover that material, but are not formal co-

or pre-requisites

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Module Outline

• Introduction to Real-Time and Embedded Systems
– Reference Model
– Hard versus soft real-time

• Job Scheduling
– Clock driven scheduling algorithms
– Priority driven scheduling algorithms
– Schedulers in commodity and real-time operating systems

• Resource access control
– Algorithms
– Implementation

• Real-time communication
– On best-effort networks
– Enhanced quality of service

• Other implementation considerations

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Timetable

Tutorial 6 Lecture 18

Lecture 5

Lecture 20Lecture 1910 Mar

Lecture 17 3 Mar

Individual work on programming assignment25 Feb

Lecture 16Lecture 15Tutorial 518 Feb

Lecture 14Lecture 13Tutorial 411 Feb

Lecture 12Lecture 11Lecture 10 4 Feb

Lecture 9Tutorial 3Lecture 828 Jan

Lecture 7Tutorial 2Lecture 621 Jan

Lecture 4Tutorial 114 Jan

Lecture 3Lecture 2Lecture 1 7 Jan

Thu 10:00-11:00Wed 10:00-11:00Tue 14:00-15:00Week starting:

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Timetable

Priority-driven Scheduling of Periodic Tasks (1)
Clock-Driven Scheduling

Lecture 5

Real-Time on General Purpose SystemsLecture 12
Real-Time Operating Systems and Languages (2)Lecture 11
Real-Time Operating Systems and Languages (1)Lecture 10Week 5

Implementing Scheduling AlgorithmsLecture 9
Scheduling Algorithms (2)Tutorial 3
Priority-driven Scheduling of Aperiodic and Sporadic Tasks (2)Lecture 8Week 4
Priority-driven Scheduling of Aperiodic and Sporadic Tasks (1)Lecture 7
Scheduling Algorithms (1)Tutorial 2
Priority-driven Scheduling of Periodic Tasks (2)Lecture 6Week 3

Lecture 4
The Basics of Real-Time SystemsTutorial 1Week 2
Overview of Real-Time SchedulingLecture 3
A Reference Model for Real-Time SystemsLecture 2
Introduction to Real-Time SystemsLecture 1Week 1

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Timetable

Individual Work on Programming Assignment
Week 8

Review of Major ConceptsLecture 20
Low-Level and Embedded Programming (2)Lecture 19Week 10

Low-Level and Embedded Programming (1)Lecture 18
Real-Time Communications/Q&A on Programming AssignmentTutorial 6
Quality of Service for Packet NetworksLecture 17Week 9

Real-Time Communication on IP NetworksLecture 16
Introduction to Real-Time CommunicationsLecture 15
Resource Access ControlTutorial 5Week 7
Resource Access Control (2)Lecture 14
Resource Access Control (1)Lecture 13
Real-Time Operating Systems and LanguagesTutorial 4Week 6

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lectures and Tutorials

• Lectures:
– Highlight relevant material from the book

• Tutorials:
– Practice problem solving, review material covered in lectures
– Expect to do worked examples and answer questions!

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Assessment

• Level M module, worth 10 credits
• 3 Problem sets (each worth 5% of total mark)

– Problem set 1: available in lecture 3, due 2:00pm on 21st January
– Problem set 2: available in lecture 6, due 2:00pm on 28th January
– Problem set 3: available in lecture 8, due 2:00pm on 4th February

• Hard deadlines: late submissions will receive zero marks unless valid special
circumstances form submitted

• Programming assignment (15% of total mark)
– Available in lecture 15, due at 5pm on 14th March
– Will involve real-time network programming in C

• Written examination (70% of total mark)
– All material in the lectures, tutorials and background reading is examinable
– Aim is to test your understanding of the material, not to test your memory

of all the details; explain why – don’t recite what

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Reading

• Jane W. S. Liu, “Real-Time Systems”, Prentice-
Hall, 2000, ISBN 0130996513
– This book comprises the lecture notes for the module

and is required reading for all students
– All material in this book is examinable

• Bill Gallmeister, “POSIX.4: Programming for the
Real-World”, O’Reilly and Associates, 1995,
ISBN 1565920740
– Optional, but provides further detail on the practical

aspects of the module

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Real-Time and Embedded Systems

• A real-time system must deliver services in a timely manner
– Not necessarily fast, but must meet some timing deadline

• An embedded system is hidden from view within a larger system
• Many real-time and embedded systems exist, often without the

awareness of their users
– Washing machine, photocopier, mobile phone, car, aircraft, industrial

plant, microwave oven, toothbrush, CD player, medical devices, etc.

• Must be able to validate real-time systems for correctness
– Some embedded real-time systems are safety critical – i.e. if they do not

complete on a timely basis, serious consequences result
– Bugs in embedded real-time systems are often difficult or expensive to fix

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Real-Time and Embedded Systems

• This module will discuss several representative classes of real-
time and embedded system:
– Digital process control
– Higher-level command and control
– Tracking and signal processing
– Real-time databases
– Telephony and multimedia

• Algorithms for scheduling tasks such that those systems complete
in a reliable and timely fashion

• Implementation techniques, operating systems and languages for
building such systems

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Digital Process Control

• Controlling some device (the “plant”) using an actuator, based on
sampled sensor data
– y(t) is the measured state of the plant
– r(t) is the desired state of the plant
– Calculate control output u(t) as a function of y(t), r(t)

Sensor ActuatorPlant

control-law
computation

A/D

controller

yk

y(t) u(t)

reference
input: r(t) rk uk

A/D D/A

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Digital Process Control

• Pseudo-code for the controller:

set timer to interrupt periodically with period T;
at each timer interrupt, do

do analogue-to-digital conversion of y(t) to get yk;
compute control output uk based on reference rk and yk;
do digital-to-analogue conversion of uk to get u(t);

end do;

• Effective control of the plant depends on:
• The correct control law computation and reference input
• The accuracy of the sensor measurements:

• Resolution of the sampled data (i.e. bits per sample)
• Timing of the clock interrupts (i.e. samples per second, 1/T)

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Digital Process Control

• The time T between any two consecutive measurement of y(t), r(t)
is the sampling period
– Small T better approximates the analogue behaviour
– Large T means less processor-time demands
– Must achieve a compromise

• If T is too large, oscillation will result as the system tries to adapt

y(t)

u(t)

umax

-umax

0

Measured State Control Output

Desired
Large T

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Digital Process Control

• How to choose sampling period?
– Rise time – the amount of time that the plant takes to reach some small

neighbourhood around the final state in response to a step change in the
reference input

– If R is the rise time, and T is the period, a good rule of thumb is that the
ratio 10 ≤ R/T ≤ 20

• Must be chosen correctly, and accurately implemented to ensure
stability

• Multi-rate systems – system is composed of multiple sensors and
actuators, each of which require different sampling periods
– Need to run multiple control loops at once, accurately
– Usually best to have the sampling periods for the different degrees of

freedom related in a harmonic way

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example: Helicopter Flight Control

Do the following in each 1/180-second cycle:
• Validate sensor data and select data source; on failure reconfigure the system
• Do the following 30-Hz avionics tasks, each once every 6 cycles:

– Keyboard input and mode selection
– Data normalization and coordinate transformation
– Tracking reference update

• Do the following 30-Hz computations, each once every 6 cycles
– Control laws of the outer pitch-control loop
– Control laws of the outer roll-control loop
– Control laws of the outer yaw- and collective-control loop

• Do each of the following 90-Hz computations once every 2 cycles, using
outputs produced by the 30-Hz computations
– Control laws of the inner pitch-control loop
– Control laws of the inner roll- and collective-control loop

• Compute the control laws of the inner yaw-control loop, using outputs from the
90-Hz computations

• Output commands to control surfaces
• Carry out built-in-test

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Digital Process Control

• Digital controllers make three assumptions:
– Sensor data give accurate estimates of the state-variables being monitored

and controlled - noiseless
– The sensor data gives the state of the plant – usually must compute plant

state from measured values
– All parameters representing the dynamics of the plant are known

• If any of these assumptions are not valid, a digital controller must
include a model of the correct system behaviour
– Estimate actual state based on noisy measurement each iteration of the

control loop
– Use estimated plant state instead of measured state to derive control output
– Often requires complex calculation, modelling

• We’ll cover scheduling dynamics; the system model is domain-
specific

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Higher-Level Control

• Controllers often organized in a hierarchy
– Multiple control loops, higher level controllers monitoring the behaviour of

low-level controllers
– Time-scale, complexity of decision making, increases as go up hierarchy;

Move from control to planning

– Higher level planning must
still be done in real-time,
although deadlines are less
tight

State
Estimator

Flight
control

State
Estimator

State
Estimator

Air traffic
control

Flight
Management

Air data

Navigation

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Real-Time Communications

• Real-time systems are increasingly distributed, including
communication networks
– Control loop may include a communication step
– System may depend on network stimuli

• Not only does a system need to run a control law with time
constraints, it must also schedule communications, sending
and receiving messages according to deadlines

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Wheel
sensors

Steering Brake Accelerator Gears

Engine
sensors

Control
system

Controller
area network

Brake
actuator Engine

controls

Example: Drive by Wire

• All data must be delivered reliably
– Bad if you turn the steering wheel, and nothing happens

• Commands from control system have highest priority, then sensors and actuators, then
control inputs

– Anti-lock brakes have a faster response time than the driver, so prioritise to ensure the car
doesn’t skid

• Network must schedule and prioritise communications

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Packet switched
voice network

Example: Packet Voice

• Voice is digitised and sent as a sequence of packets
– Constant spacing, every 10-30ms depending on codec

• Strict timeliness requirement
– Mouth to ear delay needs to be less than approximately 150ms
– Packets must be played out with equal spacing

• Relaxed reliability requirement
– Some small fraction of packets can be lost, and just sound like crackles on

the wire; most need to arrive

• Emergency calls may have priority

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Types of Real-Time Application

• Purely cyclic
– Every task executes periodically
– Demands in (computing,

communication, and storage)
resources do not vary significantly
from period to period

– Example: most digital controllers
and real-time monitors

• Mostly cyclic
– Most tasks execute periodically
– The system must also respond to

some external events (fault
recovery and external commands)
asynchronously

– Example: modern avionics and
process control systems

• Asynchronous: mostly predictable
– Most tasks are not periodic
– The time between consecutive

executions of a task may vary
considerably, or the variations in
resource utilization in different
periods may be large

– These variations have either
bounded ranges or known statistics

• Asynchronous: unpredictable
– Applications that react to

asynchronous events and have tasks
with high run-time complexity

– Example: intelligent real-time
control systems

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Types of Real-Time Application

• As we will see later, the type of application affects how we
schedule tasks, prove correctness

• It is easier to reason about applications that are more cyclic,
synchronous and predictable
– Many real-time systems designed in this manner
– Safe, conservative, design approach, if it works for your application

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Implementation Considerations

• Some real-time embedded systems are complex, implemented on
high-performance hardware
– Industrial plant control
– Civilian flight control

• Many must be implemented on hardware chosen to be low cost,
low power, light-weight and robust; with performance a distant
concern
– Military flight control, space craft control
– Consumer goods

• Often-times implemented in C or assembler, fitting within a few
kilobytes of memory
– Correctness a primary concern, efficiency a close second

C
op

yr
ig

ht
 ©

 2
00

7
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Outline of the module structure, assessment, etc.
• Introduction to real-time and embedded systems

– Examples of digital control, higher-level control, communication

• Types of real-time system
– Cyclic synchronous vs. asynchronous and unpredictable

• Implementation considerations

[Liu chapter 1]

