Worked Example:Web Server

Networked Systems Architecture 3
Lecture |19

UNIVERSITY
of
GLASGOW

Lecture Outline

® Review of laboratory exercise

® Examination

Review of Lab Work

® Four laboratory tasks:

® Simple web download
® Web server — single request
® Web server — multiple requests, sequential

® Web server — multiple requests, concurrent

® Will review operation of web server

Basic Operation

int
main ()
{
int sfd; ,
int cfd; Address of client
struct sockaddr_in caddr;
socklen_t caddr_len = sizeof(caddr);
if ((sfd = create_socket()) == -1) {
return 1;
}

while (!shouldExit) {

if ((cfd = accept(sfd, (struct sockaddr *) &caddr, &caddr_len)) == -1) {

perror ("Unable to accept connection");
shouldExit = 1;

} else {
process_request (cfd);

}

}
close(sfd);

return O;

Basic logic:
I) accept new connection
2) process request from that connection

Creating a Socket

static int
create_socket (void)

{

int fd;

struct sockaddr_in addr;

fd = socket (AF_INET, SOCK_STREAM, O0); Create a TCP/IP socket

if (£d == -1) {
Error...

}

addr.sin_family = AF_INET;

addr.sin_port = htons (8080); Bind to port 8080

addr.sin_addr.s_addr = INADDR_ANY; Any available interface

if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
Error...

}

if (listen(fd, 4) == -1) { Listen for connections
Error...

}

return £d4;

Processing Requests

static void
process_request (int £d)

{
while (1) {

char buf [BUFLEN] ;
char *headers = malloc(1l);
unsigned headerLen = 0;
char filename[1024];
int rlen;
int inf;

oo Retrieve the request — note that this reads
headers[0] = "\0'; until a blank link is received (signalled by
while (strstr(headers, "\r\n\r\n") == NULL) { two end of line markers “\\n\r\n”’in a row)

rlen = read(fd, buf, BUFLEN);
if (rlen == 0) { // Connection closed by client
Cleanup and exit
}
if (rlen == -1) ({
Error...
}
headerLen += rlen; Space is allocated for arbitrary length headers
headers = realloc(headers, headerLen + 1); — inefficient, since existing headers are copied
strncat (headers, buf, rlen); each time realloc() is called

Processing Requests

// Parse the HTTP request, to determine the requested filename.
// Note that we specify a maximum field width, to avoid buffer
// overflow attacks when parsing long filenames.

if (sscanf(headers, "GET /%1023s HTTP/1.1", filename) != 1) {

Error... A madlicious client may send us an arbitrary

} length filename

if (!hostname_matches (headers)) {
send_response_404(fd, filename);
free (headers);

break;
}
if ((inf = open(filename, O_RDONLY, 0)) == -1) {
send_response_404(fd, filename);
} else {
send_response_200(fd, filename, inf);
}i

close(inf);
free (headers);

}
close(fd);

Checking the Hostname

static int
hostname_matches (char *headers)

{
char *host;
char *colonpos;
char hostname[256];
char myhostname[256];
char domainname[256];

// Parse the HTTP headers, to find and validate the "Host:" header.

// Note that we search for a newline followed by "Host:", to avoid

// matching other headers that end in "Host:".

host = strstr(headers, "\nHost:");

if ((host == NULL) || (sscanf(host, "\nHost: %255s\n", hostname) != 1)) ({
printf ("Cannot parse HTTP Host: Header\n");
return O;

}

// When running on a non-standard port, browsers include a colon
// and the port number in the "Host:" header. Strip this out.
if ((colonpos = strchr(hostname, ':')) != NULL) {

*colonpos = '\0';

}

Checking the Hostname

gethostname (myhostname, 256);
if (strcmp(hostname, myhostname) != 0) {

}

// The hostname in the request didn't match the return from gethostname().
// There are three possible reasons for this:

// 1) The hostname in the request doesn't match our hostname

// 2) The hostname in the request doesn't include the domain name, but

// gethostname() does (gethostname() works this way on MacOS X)

// 3) The hostname in the request might include the full domain name,

// while gethostname() on this machine returns only the host part

// (this is how gethostname() works on Linux)

// Cases (2) and (3) are okay, and should be accepted, so check for these now.
char myNameDom[512] ;

char reNameDom[512] ;

getdomainname (domainname, 256);

sprintf (myNameDom, "%s.%s", myhostname, domainname);

sprintf (reNameDom, "%s.%s", hostname, domainname);

if ((strcmp(hostname, myNameDom) != 0) && (strcmp(reNameDom, myhostname) != 0)){
return O;

}

return 1;

Sending Responses

send_response(int fd,

{

char *data)

write(fd, data, strlen(data));

}

static void

send_response_404(int

{
// Requested file
send_response(fd,
send_response(fd,
send_response(fd,
send_response(fd,
send_response(fd,
send_response(fd,
send_response(fd,
send_response(fd,
send_response (fd,
send_response(fd,
send_response(fd,
send_response(fd,

fd, char *filename)

doesn't exist, send an error
"HTTP/1.1 404 File Not Found\r\n");
"Content-Type: text/html\r\n");
"Content-Length: 105\r\n");
"\r\n");

"<html>\r\n");

"<head>\r\n");

"<title> 404 File Not Found </title>\r\n");
"</head>\r\n");

"<body>\r\n");

"<p> File not found </p>\r\n");
"</body>\r\n");

"</html>\r\n");

printf("404 %s\n", filename);

Sending Responses

static void
send_response_200(int fd, char *filename, int inf)

{
// File exists, send OK response:
struct stat fs;
char *extn;
char buf [BUFLEN] ;
int rlen;

send_response(fd, "HTTP/1.1 200 OK\r\n");

extn = strrchr(filename, '.'); Generate and send Content-Type: based on the extension
if (extn == NULL) {
// No extension on the requested filename
send_response(fd, "Content-Type: application/octet-stream\r\n");
} else if (strcmp(extn, ".html") == 0) {
send_response(fd, "Content-Type: text/html\r\n");
} else if ...

} else {
// Unknown extension
send_response(fd, "Content-Type: application/octet-stream\r\n");

Sending Responses

// Find file size, generate and send Content-Length:
fstat(inf, &fs);

sprintf (buf, "Content-Length: %d\r\n", (int) fs.st_size);
send_response(fd, buf);

// Blank line indicates end of headers
send_response(fd, "\r\n");

// Send the requested file

while ((rlen = read(inf, buf, BUFLEN)) > 0) { Functions from <stdio.h> could also be used
write(fd, buf, rlen);

}

printf("200 %s (%d bytes)\n", filename, (int) fs.st_size);

Multiple Connections

static void *
response_thread(void *arg)

{
int fd = * ((int *) arg);
free(arg);
printf ("[£d=%02d] Connection opened\n", £d);
while (1) {
...as process_request() before
} Simplest concurrent approach: create a thread
for each request; requires only minimal changes
int main() relative to the single connection case
{
pthread_t t;
if ((cfd = accept(sfd, (struct sockaddr *) &caddr, &caddr_len)) == -1) {
} else {
int *arg = malloc(sizeof(int));
*arg = cfd;

pthread_create(&t, NULL, response_thread, arg);

Thread Pool

A
conotlr | T[]
PPN
@ Mutex \
< Cond Var -

Single controller thread — accepts connections and adds to work queue

/. NN

Pool of worker threads — take connections from queue, generate
responses

Access to work queue protected by a mutex; workers wait on a
condition variable

The Work Queue

struct work queue_elem {

Each piece of work is an accepted file descriptor, from
which a request should be read

Mutex lock to synchronise access to the queue
Single-linked list of work items

Number of workers waiting
Condition variable, on which workers wait

Setup the work queue

int fd;
struct work_queue_elem *next;

}i

struct work queue {
pthread_mutex_t lock;
struct work_queue_elem *head;
int should_exit;
int worker_waiting;
pthread_cond_t worker_cv;

}i

int

main ()

{
struct work_queue *wq = malloc(sizeof(struct work_queue));
wqg->head = NULL;
wqg->should_exit = 0;
wg->worker_waiting = O;

pthread mutex_init (&wg->lock, NULL);
pthread_cond_init (&wqg->worker_cv, NULL);

Work Queue Initialisation

pthread_t threads [NUM_THREADS];

// Setup the work queue...

wq->head = NULL;
wq->should_exit = 0;
wq->worker_waiting 0;

pthread mutex_init (&wg->lock, NULL);
pthread_cond_init (&wg->worker cv, NULL);

// Create the worker threads...

for (i = 0; i < NUM_THREADS; i++) {
pthread_create(&threads[i], NULL, response_thread, wq);

}

Adding Work to the Queue

if ((cfd = accept(sfd, (struct sockaddr *) &caddr, &caddr_len)) == -1) {
perror ("Unable to accept connection");
break;

} else {

struct work_queue_elem *wqe;
pthread_mutex_lock (&wg->lock); Lock the work queue
wge = malloc(sizeof (struct work_queue_elem)); Create and populate struct representing new work

wqge->fd = cfd; item (an accepted file descriptor)
wge->next = wqg->head;

wg->head = wqe; Add to head of work queue

if (wg->worker waiting) { Signal workers that there’s a new work item
pthread_cond_signal (&wqg->worker_cv); available

}

pthread_mutex_unlock (&wg->lock) ; Unlock the work queue

Accepting a Work ltem

pthread mutex_ lock (&wg->lock); Lock the work queue
while (wg->head == NULL) { Loop, waiting for new work
if (wg->should_exit) { Time to exit?

pthread_mutex_unlock (&wq->lock) ;
ptheaed_exit (NULL);

}

wg->worker waiting++; Nothing to to, wait for next request...
pthread_cond_wait (&wqg->worker_cv, &wg->lock);
wq->worker_waiting--;

}

wge = wqg->head; Take work item from queue
wqg->head = wge->next;

pthread_mutex_unlock (&wg->lock) ; Unlock the work queue

Must loop waiting on the condition variable, since another
thread may take the work

Laboratory Exercise:VWrap Up

® Aimed to introduce socket programming in C,
showing operation of a typical Internet server

® Should understand how to use Berkeley Sockets API

® Should understand design pattern for single threaded
and concurrent server

® Should understand basic concepts in parsing text-
based protocols — and difficulty getting it correct!

Examination

® Assessment: |00% examination

® Format of exam:

® Two hours; answer all 3 questions

® |aboratory material will be explicitly examined

® Past papers in the library

® The course website has the 2007 exam and a worked
answer — strongly recommend trying the questions before
looking at the worked answer

Questions!

