
Applications (4)

Networked Systems Architecture 3
Lecture 18

Lecture Outline

• Security considerations

• Traffic monitoring, confidentiality and authentication

• Validating input data

• Buffer overflow attacks

Traffic Monitoring

• Possible to snoop on traffic on any network link

• Wireless links – simply listen

• Wired links – switches can be configured to forward
a copy of all traffic to a particular link, for monitoring

• Ability to monitor traffic a legal requirement in
many countries, for legal reasons

• E.g. to enable authorised wiretaps by the police

• Can also be exploited for malicious purposes

Confidentiality

• Must encrypt data to achieve confidentiality

• Two basic approaches

• Symmetric cryptography

• Advanced Encryption Standard (AES a.k.a. Rijndael), Triple-DES

• Data Encryption Standard (DES) – broken; subject to brute-force attacks

• Public key cryptography

• The Diffie-Hellman algorithm

• The Rivest-Shamir-Adleman (RSA) algorithm

• Complex mathematics – will not attempt to describe

Symmetric Cryptography

• Mathematical function converts
plain text into cipher-text

• Relatively fast – suitable for bulk encryption

• Cipher-text is binary data, and may need
base64 encoding

• The conversation is protected
by a secret key

• The same key is used to encrypt as is used
to decrypt

• The key must be kept secret, else security
lost – problem how to distribute the key?

“It was a bright cold day in April, and
the clocks were striking thirteen.”

rX27qrhlM/Pd5UnkpqTuXnJBZecFl
bP5Xd8ouyAWgCLxZJUD951SaxusX5
bj0O2P9XkVGGHmmOqByZxu2pU+cCl
sERzuHKxc

DES Key

/DES Key

“It was a bright cold day in April, and
the clocks were striking thirteen.”

Public Key Cryptography

• Key split into two parts:

• Public key – is widely distributed

• Private key – must be kept secret

• Encrypt using public key
→ private key is needed
to decrypt

• Public keys are published in a well
known directory → solves the key
distribution problem

• Problem: very slow to encrypt and
decrypt

<big blob of encrypted stuff>

“It was a bright cold day in April, and
the clocks were striking thirteen.”

RSA Public key

/RSA Private key

“It was a bright cold day in April, and
the clocks were striking thirteen.”

Hybrid Cryptography

• Use combination of public-key and symmetric
cryptography for security and performance

• Generate a random, ephemeral, session key that can
be used with symmetric cryptography

• Use a public-key system to securely distribute this
session key – relatively fast, since session key is small

• Encrypt the data using symmetric cryptography, keyed
by the session key

• Examples: PGP for email, SSL for web pages

Authentication

• Encryption can ensure confidentiality – but how
to tell if a message has been tampered with?

• Use combination of a cryptographic hash and public
key cryptography to produce a digital signature

• Gives some confidence that there is no man-in-the-
middle attack in progress

• Can also be used to prove origin of data

Cryptographic Hash Functions

• Generate a fixed length (e.g. 160 bit) hash code
of an arbitrary length input value

• Should not be feasible to derive input value from hash

• Should not be feasible to generate a message with the
same hash as another

• Examples: MD5 and SHA-1

• Note: weaknesses found in both – care required!

MD5(“It was a bright cold day in April, and the clocks were
striking thirteen”) = 2c794fa2698f4b1bc5aa4e290abdf3a5

Digital Signature Algorithms

• Generating a digital signature:

• Generate a cryptographic hash of the data

• Encrypt the hash with your private key to give a digital
signature

• Verifying a digital signature:

• Re-calculate the cryptographic hash of the data

• Decrypt the signature using the public key, compare
with the calculated hash value → should match

Existing Secure Protocols

• Wide range of existing security protocols give
confidentiality and authentication:

• IPsec

• Transport Layer Security (TLS)

• An enhancement to the Secure Sockets Layer (SSL)

• Datagram TLS

• Secure shell (ssh)

• Use them – don’t try to invent your own!

Validating Input Data

• Networked applications fundamentally dealing
with data supplied by un-trusted third parties

• Data read from the network may not conform to the
protocol specification

• Due to ignorance and/or bugs

• Due to malice, and a desire to disrupt services

• Must carefully validate all data before use

Malicious User Input

• Beware escape characters in user-supplied data!

• Must sanitise all user-supplied data before use, to stop
malicious users including control characters that might
disrupt operation of any scripting language inside your
application

ht
tp

://
xk

cd
.c

om
/3

27
/

Buffer Overflow Attacks

• The C programming language doesn’t check
array bounds

• Responsibility of the programmer to ensure bounds
are not violated

• Easy to get wrong – typically results in a “core dump”

• What actually happens here?

Function Calls and the Stack
#include <string.h>
#include <stdio.h>

static void
foo(char *src)
{
 char dst[12];

 strcpy(dst, src);
}

int
main(int argc, char *argv[])
{
 char hello[] = "Hello, world\n";

 foo(argv[1]);
 printf("%s", hello);
 return 0;
}

Parameters

Return address

Frame pointer

Local variables

...unused...

0xbfe710fc

0xbfe71108

0xbfe7110c

0xbfe71110

char dst[12]

char *src

Example of call stack within the
call to the function foo()

What happens if argv[1] is longer than 12 bytes?

Function Calls and the Stack

• The strcpy() call doesn’t
check array bounds

• Overwrites the function
return address on stack,
along with the following
memory locations

• If malicious, we can write
executable code into this
space, set return address
to jump into our code…

Parameters

Return address

Frame pointer

Local variables

...unused...

0xbfe710fc

0xbfe71108

0xbfe7110c

0xbfe71110

char dst[12]

char *src

Example of call stack within the
call to the function foo()

Arbitrary Code Execution

• Buffer overflows in network code are the
primary source of security problems

• If you write network code in C, but very careful to
check all array bounds

• If your code can be crashed by network traffic, it
probably has an exploitable buffer overflow

• http://insecure.org/stf/smashstack.html

Questions?

