Applications (4)

Networked Systems Architecture 3
Lecture |8

UNIVERSITY
of
GLASGOW

Lecture Outline

® Security considerations

® Traffic monitoring, confidentiality and authentication
® Validating input data

® Buffer overflow attacks

Traffic Monitoring

® Possible to snoop on traffic on any network link

® W/ireless links — simply listen

® Wired links — switches can be configured to forward
a copy of all traffic to a particular link, for monitoring

® Ability to monitor traffic a legal requirement in
many countries, for legal reasons

® E.g.to enable authorised wiretaps by the police

® Can also be exploited for malicious purposes

Confidentiality

® Must encrypt data to achieve confidentiality

® [wo basic approaches

® Symmetric cryptography
® Advanced Encryption Standard (AES a.k.a. Rijndael), Triple-DES

® Data Encryption Standard (DES) — broken; subject to brute-force attacks

® Public key cryptography

® The Diffie-Hellman algorithm
® The Rivest-Shamir-Adleman (RSA) algorithm

® Complex mathematics — will not attempt to describe

Symmetric Cryptography

“It was a bright cold day in April, and

® Mathematical function converts the clocks were striking thirceen.’
plain text into cipher-text l
® Relatively fast — suitable for bulk encryption Key
® Cipher-text is binary data, and may need l
base64 encoding rx27qrhlM/Pd5UnkpgqTuXnJBZecF1

bP5Xd8ouyAWgCLxXZJUD951SaxusX5

® The conversation is protected — b3002P9XkveGHmmOgByZxu2pU+eCl

sERzuHKxc

by a secret key l

® The same key is used to encrypt as is used Key
to decrypt

® The key must be kept secret, else security l

lost — problem how to distribute the key? It was a bright cold day in April, and
the clocks were striking thirteen.

Public Key Cryptography

® Key split into two parts:

Public key — is widely distributed

Private key — must be kept secret

® Encrypt using public key
— private key is needed
to decrypt

Public keys are published in a well
known directory — solves the key
distribution problem

Problem: very slow to encrypt and
decrypt

“It was a bright cold day in April, and
the clocks were striking thirteen.”

!

Public key

<big blob of encrypted stuff>

!

Private key

“It was a bright cold day in April, and
the clocks were striking thirteen.”

Hybrid Cryptography

® Use combination of public-key and symmetric
cryptography for security and performance

Generate a random, ephemeral, session key that can
be used with symmetric cryptography

Use a public-key system to securely distribute this
session key — relatively fast, since session key is small

Encrypt the data using symmetric cryptography, keyed
by the session key

Examples: PGP for email, SSL for web pages

Authentication

® Encryption can ensure confidentiality — but how
to tell if a message has been tampered with!?

® Use combination of a cryptographic hash and public
key cryptography to produce a digital signature

® Gives some confidence that there is no man-in-the-
middle attack in progress

® Can also be used to prove origin of data

Cryptographic Hash Functions

® Generate a fixed length (e.g. 160 bit) hash code
of an arbitrary length input value

® Should not be feasible to derive input value from hash

® Should not be feasible to generate a message with the
same hash as another

® Examples: MD5 and SHA-|

MD5(“It was a bright cold day in April, and the clocks were
striking thirteen”) = 2c¢794fa2698f4b|bc5aa4e290abdf3a5

® Note: weaknesses found in both — care required!

Digital Signature Algorithms

® Generating a digital signature:

® Generate a cryptographic hash of the data

® Encrypt the hash with your private key to give a digital
signature

® Verifying a digital signature:
® Re-calculate the cryptographic hash of the data

® Decrypt the signature using the public key, compare
with the calculated hash value — should match

Existing Secure Protocols

® Wide range of existing security protocols give
confidentiality and authentication:

® |Psec

® Transport Layer Security (TLS)

® An enhancement to the Secure Sockets Layer (SSL)

® Datagram TLS

® Secure shell (ssh)

® Use them — don’t try to invent your own!

Validating Input Data

® Networked applications fundamentally dealing
with data supplied by un-trusted third parties

® Data read from the network may not conform to the
protocol specification

® Due to ignorance and/or bugs

® Due to malice, and a desire to disrupt services

® Must carefully validate all data before use

Malicious User Input

HI, THIS 1S OH, DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME IN A LAY - Robert'); DROP T HOPE YOURE HAPPY.

COMPUTER TROUBLE. TABLE Students; -~ 7 d
\ R AND T HOPE

J A ~OH.YES UTNE < YOUVE LEARNED

m m BOBBY TABLES, ¢ TOSANMIZE YOUR

WE CALL HIM. DATARASE INPUTS,

® Beware escape characters in user-supplied data!

® Must sanitise all user-supplied data before use, to stop
malicious users including control characters that might
disrupt operation of any scripting language inside your
application

Buffer Overflow Attacks

® The C programming language doesn’t check
array bounds

® Responsibility of the programmer to ensure bounds
are not violated

® FEasy to get wrong — typically results in a “core dump”

® What actually happens here!

Function Calls and the Stack

#include <string.h>
#include <stdio.h>

static void
foo(char *src)

{
char dst]

12];

strcpy(dst, src);

}
int
main(int argc, char *argv[])
{
char hello[] = "Hello, world\n";
foo(argv([1l]);
printf("%s", hello);
return O;
}

Example of call stack within the

call to the function foo ()

Oxbfe71110

Oxbfe7110c

Oxbfe71108

Oxbfe710fc

What happens if argv[1] is longer than |2 bytes?

Parameters

Return address

Frame pointer

Local variables

...unused...

char *src

char dst[12]

Function Calls and the Stack

® The strcpy() call doesn’t
check array bounds

® Overwrites the function
return address on stack,
along with the following
memory locations

® |f malicious, we can write
executable code into this
space, set return address
to jump into our code...

Example of call stack within the

call to the function foo ()

Oxbfe71110

Oxbfe7110c

Oxbfe71108

Oxbfe710fc

Parameters

Return address

Frame pointer

Local variables

...unused...

char *src

char dst[12]

Arbitrary Code Execution

® Buffer overflows in network code are the
primary source of security problems

® If you write network code in C, but very careful to
check all array bounds

® If your code can be crashed by network traffic, it
probably has an exploitable buffer overflow

® http://insecure.org/stf/smashstack.html

Questions!

