
Applications (2)

Networked Systems Architecture 3
Lecture 16

Lecture Outline

• Application logic and protocol style

• How is the application protocol data structured?

• How do the interactions occur?

• How are errors signalled?

• Application protocol examples

• SMTP, POP3, HTTP, Jabber

Application Logic

• Session layer conveys data between applications

• The presentation and application layers impose
meaning on that data to perform an application-
level task

• Deliver email

• Retrieve web pages

• Stream video

• Etc.

Protocol Style

• How is the application protocol data structured?

• Textual or binary?

• Framing mechanism?

• How do the interactions occur?

• Explicit request-response, or potentially unsolicited?

• Degree of chatter?

• How are errors reported?

Textual or Binary?

• Does the protocol exchange textual or binary
messages?

• Textual – flexible and extensible

• High-level application layer protocols (e.g. email, web, instant messaging, …)

• But see http://www.ietf.org/rfc/rfc3252.txt (and note the publication date!)

• Binary – highly optimised and efficient

• Audio and video data (e.g. JPEG, MPEG, Vorbis, …)

• Low-level or multimedia transport protocols (e.g. TCP/IP, RTP, …)

Framing over TCP

• How to denote record boundaries?

• TCP connection is reliable, but doesn’t frame the
data; must parse the byte stream

• Requires a structured protocol:

• HTTP/RTSP/SIP – text based messages, comprising an initial request, followed
by headers, one per line, ending with a blank line

• XML-based protocols (e.g. Jabber) – parse data until the appropriate closing
tag is seen

• Binary protocols – begin with a length field, telling how much data to read

Framing over UDP

• UDP provides framing – data delivered packet
at a time

• But, unreliable → application must frame data
so it is useful if some packets lost

• E.g. streaming video with I and P frames

Time

Intermediate (predicted) frames Full frame

How do Interactions Occur?

• How does communication proceed?

• Does the server announce its presence on the initial
connection? Or does it wait for the client to start?

• Is there an explicit request for every response? Can
the server send unsolicited data?

• Is there a lot of chatter, or does the communication
complete within a single round-trip?

Reducing Protocol Chatter

• The more “chatty” protocols take many round
trips to complete a transaction

• RTT fixed by speed-of-light irrespective of network
bandwidth → often limiting factor in response time

• Want to reduce number of round trips before
the transaction completes → send transaction
in single request, get a single response

How are Responses Signalled?

• Useful to have an extensible framework for
response codes

• Many applications settled on a
three digit numeric code

• First digit indicates response type

• Last two digits give specific error
(or other response)

Error Code Meaning

1xx In progress

2xx Ok

3xx Redirect

4xx Client error

5xx Server error

Application Protocol Examples

• Wide range of application protocols used today

• Four common examples:

• SMTP – sending email

• POP3 – retrieving email

• HTTP – world wide web

• Jabber – open standard for instant messaging

Email

• One of the oldest Internet applications

• Simple Mail Transfer Protocol (SMTP)

• http://www.ietf.org/rfc/rfc2821.txt

• http://www.ietf.org/rfc/rfc2822.txt

• Post Office Protocol, v3

• http://www.ietf.org/rfc/rfc1939.txt

• Internet Message Access Protocol, v4rev1

• http://www.ietf.org/rfc/rfc3501.txt

Mail sending
Original version: RFCs 821 and 822

Mail download from server

Remote mailbox manipulation

Sending Email: SMTP

S: 220 mr1.dcs.gla.ac.uk ESMTP Exim 4.42 Wed, 27 Feb 2008 10:31:18 +0000
C: HELO bo720-1-01.dcs.gla.ac.uk
S: 250 mr1.dcs.gla.ac.uk Hello bo720-1-01.dcs.gla.ac.uk [130.209.250.151]
C: MAIL FROM:csp@dcs.gla.ac.uk
S: 250 OK
C: RCPT TO:csp@csperkins.org
S: 250 Accepted
C: DATA
S: 354 Enter message, ending with "." on a line by itself
C: From: Colin Perkins <csp@dcs.gla.ac.uk>
C: To: Colin Perkins <csp@csperkins.org>
C: Date: Wed 27 Feb 2008 10:32:45
C: Subject: Test
C:
C: This is a test
C: .
S: 250 OK id=1JUJa1-00073j-22
C: QUIT
S: 221 mr1.dcs.gla.ac.uk closing connection

Line-by-line request-response; very chatty
All commands are four characters + data
All responses are numeric + explanatory text

Structure of message: inspiration for HTTP design
Headers, blank line, then body
Many headers re-used identically in HTTP

Retrieving Email: POP3
S: +OK POP3 mr1 v2003.83rh server ready
C: USER csp
S: +OK User name accepted, password please
C: PASS ...password elided...
S: +OK Mailbox open, 4 messages
C: STAT
S: +OK 4 21142
C: LIST
S: +OK Mailbox scan listing follows
S: 1 1626
S: 2 7384
S: 3 6101
S: 4 6031
S: .
C: RETR 1
S: +OK 1626 octets
S: Return-path: <jcz@vxu.se>
S: Envelope-to: csp@dcs.gla.ac.uk
S: Delivery-date: Wed, 13 Feb 2008 18:40:07 +0000
S: ...email message elided...
S: .
C: DELE 1
S: +OK Message deleted
C: QUIT
S: +OK Sayonara

Line-by-line request-response; very chatty
Follows style of SMTP

World Wide Web: HTTP

• Hypertext Transport Protocol – HTTP/1.1

• http://www.ietf.org/rfc/rfc2616.txt

• Flexible, textual, client-server protocol, with no
unsolicited responses

• Range of request types (GET, PUT, OPTIONS, …)

• Extremely flexible headers → hard to parse, validate

• All information needed to answer a request sent at
once – response can be provided within single RTT

World Wide Web: HTTP
C: GET /index.html HTTP/1.1
C: Accept-Language: en-gb
C: Accept-Encoding: gzip, deflate
C: Accept: text/xml, application/xml, application/xhtml+xml, text/html, text/plain
C: User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-gb)
C: AppleWebKit/523.12.2 (KHTML, like Gecko) Version/3.0.4 Safari/523.12.2
C: Cache-Control: max-age=0
C: Connection: keep-alive
C: Host: www.dcs.gla.ac.uk
C:
S: HTTP/1.1 200 OK
S: Date: Wed, 27 Feb 2008 22:44:25 GMT
S: Server: Apache/2.0.46 (Red Hat)
S: Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT
S: Accept-Ranges: bytes
S: Content-Length: 3646
S: Connection: close
S: Content-Type: text/html; charset=UTF-8
S:
S: <HTML>
S: <HEAD>
S: <TITLE>Computing Science, University of Glasgow</TITLE>
S: ...remainder of page elided...

Initial request line (“GET…”)
Headers, one per line
Blank line indicates end of request

Initial response code (“HTTP/1.1 200 OK”)
Headers, one per line
The “Content-Length:” header indicates body size
Blank line indicates end of headers

Unstructured body data follows, with specified size

Instant Messaging

• Many proprietary instant messaging protocols

• MSN, AIM, etc.

• Poorly documented, trying to achieve lock-in

• Two open standards

• Extensible Messaging and Presence Protocol (XMPP)

• http://www.ietf.org/rfc/rfc3920.txt (a.k.a. “Jabber”)

• SIP for Instant Messaging and Presence Leveraging
Extensions (SIMPLE)

• Extremely complex; driven by telcos; not widely used

Instant Messaging: Jabber
C: <?xml version='1.0'?>
 <stream:stream to='example.com' xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams' version='1.0'>
S: <?xml version='1.0'?>
 <stream:stream from='example.com' id='someid'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams' version='1.0'>
C: <message from='juliet@example.com' to='romeo@example.net'
 xml:lang='en'>
C: <body>Art thou not Romeo, and a Montague?</body>
C: </message>
S: <message from='romeo@example.net' to='juliet@example.com'
 xml:lang='en'>
S: <body>Neither, fair saint, if either thee dislike.</body>
S: </message>
C: </stream:stream>
S: </stream:stream>So

ur
ce

: R
FC

 3
92

0

Data structured as an XML stream
Must be incrementally parsed, watching for closing tags
Easy to validate correctness, due to formal XML syntax

Inefficient, due to XML bloat → compresses well

Lots of open source tools: www.jabber.org

Application Protocol Examples

• Only given brief overview of these protocols –
many details omitted

• If implementing, read the standards documents, to
understand the details!

• Internet applications traditionally built on very
flexible, text-based, protocols

• Open standards, open source, rapid evolution

Questions?

