
Transport Layer (3)

Networked Systems Architecture 3
Lecture 14



Lecture Outline

• Congestion control principles

• Congestion control in the Internet

• TCP congestion control

• Alternative approaches



What is Congestion Control?

• Adapting speed of transmission to match 
available end-to-end network capacity

• Analogous to flow control on a single link

• Preventing congestion collapse of a network

Packets Sent

Pa
ck

et
s 

D
el

iv
er

ed

Maximum capacity

Congestion collapse

No useful work done

Occurred in the Internet in 1986, 
before congestion control added



Network or Transport Layer?

• Can implement congestion control at either the 
network or the transport layer

• Network layer – safe, ensures all transport protocols 
are congestion controlled, requires all applications to 
use the same congestion control scheme

• Transport layer – flexible, transports protocols can 
optimise congestion control for applications, but a 
misbehaving transport can congest the network



Congestion Control Principles

• Two key principles, first elucidated by 
Van Jacobson in 1988:

• Conservation of packets

• Additive increase/multiplicative decrease in 
sending rate

• Together, ensure stability of the network

Van Jacobson

So
ur

ce
: P

A
R

C



Conservation of Packets

• The network has a certain capacity

• The bandwidth x delay product of the path

• When in equilibrium at that capacity, send one 
packet for each packet received

• Total number of packets in transit remains constant

• “ACK clocking” – each acknowledgement “clocks out” the next packet

• Will automatically reduce sending rate as network 
gets congested, and delivers packets more slowly



AIMD Algorithms

• Adjust sending rate according to an additive 
increase/multiplicative decrease algorithm

• Start slowly, increase gradually to find equilibrium

• Add a small amount to the sending speed each time interval without loss

• For a window-based algorithm wi = wi-1 + α each RTT, where α = 1 typically

• Respond to congestion rapidly

• Multiply the sending speed by some factor β < 1 each interval loss seen

• For a window-based algorithm wi = wi-1 × β each RTT, where β = 1/2 typically

• Faster reduction than increase → stability



How to Adapt Transmission?

• For sliding window protocols:

• Acknowledge each packet, only send new data when 
an acknowledgement received

• Adjust size of window, based on AIMD rules

• Other types of protocol should do something 
similar



Congestion in the Internet

• Congestion control provided by transport layer

• Dominant protocol is TCP

• Others try to be “TCP Friendly”

• Network layer signals congestion to transport

• Packets discarded on congestion

• Note: implications for wireless Internet

• Modern TCP also has ECN bits, but not widely used



TCP Congestion Control

• TCP is a sliding window protocol, measuring the 
window size in bytes

• Plus slow start and congestion avoidance algorithms

• Gives an approximately equal share of the bandwidth 
to each flow sharing a link

• “The world’s most baroque sliding-window protocol” – 
Lloyd Wood



TCP Congestion Control

20191817161514131211109877 8 9 10 11 12 13 14 15 16 17 18 19 20

Sender

T
im

e

Receiver

T
im

e

6543211 2 3 4 5 61 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 197 8 9 10 11 12 13 14

• Sliding window protocols used at the 
data link layer – ensure full utilisation 
of a link

• Also used at transport layer – ensure 
full utilisation of a path

• Problem: how to size the window?

• Unlike at the link layer, you don’t know the 
bandwidth x delay product of the path



TCP Congestion Control

• Issues with transport layer sliding window 
protocols:

• How to choose initial window?

• How to find the link capacity?

• Slow start to estimate the bottleneck link capacity

• Congestion avoidance to probe for changes in capacity



Choosing the Initial Window

• How to choose initial window size, Winit?

• No information → need to measure path capacity

• Start with a small window, increase until congestion

• Winit of one packet per round-trip time is the only safe option – equivalent 
to a stop-and-wait protocol – but is usually overly pessimistic

• TCP uses a slightly larger initial window: 

• Winit = min(4 × MSS, max(2 × MSS, 4380 bytes)) packets per round trip time

• Example: an Ethernet with MTU of 1500 bytes, TCP/IP headers of 40 bytes 
→ Winit = min(4 × 1460, max(2 × 1460, 4380)) = 4380 bytes = 3 packets per RTT

MSS = Maximum Segment 
Size (MTU minus TCP/IP 
header size)



Finding the Link Capacity

• The initial window allows you to send

• How to choose the right window size to match 
the link capacity? Two issues:

• How to find the correct window for the path when a 
new connection starts – slow start

• How to adapt to changes in the available capacity 
once a connection is running – congestion avoidance



Slow Start

• Initial window, Winit = 1 packet per RTT

• Or similar… a “slow start” to the connection

• Need to rapidly increase to the correct value 
for the network

• Each acknowledgement for new data increases the 
window by 1 packet per RTT

• On packet loss, immediately stop increasing window



Slow Start

Sender Receiver

• Two packets generated 
per acknowledgement

• The window doubles on 
every round trip time – 
until loss occurs

• Rapidly finds the correct 
window size for the path



Congestion Avoidance

• Congestion avoidance mode used to probe for 
changes in network capacity

• E.g. is sharing a connection with other traffic, and that 
traffic stops, meaning the available capacity increases

• Window increased by 1 packet per RTT

• A slow, additive increase in the window: wi = wi-1 + 1

• Until congestion is observed → respond to loss 



Detecting Congestion

• TCP uses cumulative positive ACKs → two ways 
to detect congestion

• Triple duplicate ACK → packet lost due to congestion

• ACKs stop arriving → no data reaching receiver; link 
has failed completely somewhere

• How long to wait before assuming ACKs have stopped?

• Trto = max(1 second, average RTT + (4 x RTT variance))



Responding to Congestion

• If loss detected by triple-duplicate ACK:

• Transient congestion, but data still being received

• Multiplicative decrease in window: wi = wi-1 × 0.5

• Rapid reduction in sending speed allows congestion 
to clear quickly, avoids congestion collapse



Responding to Congestion

• If loss detected by time-out:

• No packets received for a long period of time – likely 
a significant problem with network (e.g. link failed)

• Return to initial sending window, and probe for the 
new capacity using slow start

• Assume the route has changed, and you know nothing 
about the new path



Congestion Window Evolution 

1

2
3
4
5
6

7
8
9

10

11

12
13
14
15
16

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
on

ge
st

io
n 

W
in

do
w

 (
se

gm
en

ts
)

Time (RTT)

Slow start Congestion avoidance

Typical evolution of TCP window, assuming Winit = 1

Converge on fair 
share of the path 
capacity



The Limitations of TCP

• TCP assumes loss is due to congestion

• Too much traffic queued at an intermediate link → 
some packets dropped

• This is not always true:

• Wireless networks

• High-speed long-distance optical networks

• Much research into improved versions of TCP for 
wireless links



Other Congestion Control

• TCP is not appropriate for all applications

• But need to be TCP Friendly:

• Avoid congestion collapse

• Avoid gratuitous unfairness

• Streaming media applications prefer something 
with a smoother response function

• Lots of research ongoing, but no accepted standards



Questions?


