Transport Layer (2)

Networked Systems Architecture 3
Lecture |3

UNIVERSITY
of
GLASGOW

Lecture Outline

® Modelling protocol behaviour

® Managing transport connections

® Connection establishment
® Reliable data transfer

® Connection tear down

Modelling Protocol Behaviour

® Can model protocols using
a finite state machine

Disconnected

Send “connection requested”
\
“declined”

(Request sent)

”l

® A set of states with transitions between
them

® The current state indicates what the
system is doing at any time

Send “close connection

Get “accepted”

® Transitions show occurrence of events
and the response of the system

Connected

® Can be used to define the Example: partial state machine for
behaviour of a PI"OtOCO' opening and closing a connection

Managing Connections

® One role of transport layer: provide reliability

® How to reliably manage transport connections!?

Setup a reliable connection over an unreliable
connectionless network

Transport data without loss over an unreliable
network

Agree to tear down a connection

Connection Establishment

® How do two hosts agree to communicate?

Host A Host B
Connection
requested
Di ted Listeni
accepted

Connected

ime

Connection Establishment

® What if the initial request is lost?

Host A Host B

Connection

requested \X

Disconnected Listening

CRequest sent) Timeout &

retransmit
Connection

£
i 4 i 4

Connected

ime

Connection Establishment

® What if the “connection accepted” reply is lost?

Host A Host B
Connection
requested
onnection
accepted
X
CRequest sent) Timeout &

retransmit \ Connected
Error:already connected!

ime

Connection Establishment

® What if the “connection accepted” reply is lost?

® Sequence number in messages; random initial value

Host A

Connection |Seq =5

Disconnected

CRequest sent) Timeout & |Seq =

. - X
retransmit
Duplicate request
Retransmit “connection accepted”

Time

X

Host B

requested
Connection

Time
<

Listening

accepted

Connected

Connection Establishment

® What if data from an old connection is still in
the network?

Host A Host B
Connection |Seq = Delayed cqnnection
Disconnected Listenin
Connection g
accepted
Error:already
CRequest sent) connected!

Connected

ime

Connection Establishment

® Solution for robust connection establishment:
use a three-way handshake

Host A Host B

- sen
Connection eq =,
requested

Disconnected Listening

/

Connection

— x,5e4 accepted
ack = X P
Accepting
Request sent)
C d aAck = connection

V4

Connected

ime

Three Way Handshake

® Three way handshake ensures robustness

® Delayed control messages cause an acknowledgement
with incorrect sequence number, which is detected to

abort the connection establishment

® Hosts cannot reuse initial sequence number until the
maximum packet lifetime passed

® Requires hosts to keep state regarding previous connections, to avoid reuse

® Randomly chosen initial sequence number makes collisions unlikely if a host
crash causes state to be lost

Example: TCP Connections

® TCP connections use a
three way handshake

Use the SYN and ACK flags in the
TCP header to signal connection
progress

Packets contain sequence number
and acknowledgement number

Host B

Example: TCP Connections

0i1i2i34i5:6:7i819110i11:12i13514]15{16{17:18119:20i21122:23124:2526127:28:29:30:31

?

Source Port Destination Port

—> «—

TCP

Data Offset Reserved Urg Psh | Rst Fin Window

Checksum Urgent Pointer

[options - variable length]

Data

—> —

TCP State Machine

Action/Effect Connect/SYN
. Close/-
Listen/- = Close/-
NN

Send/SYN

SYN+ACK/ACK

® Shows client and server on same state diagram

® Additional transitions allow simultaneous open

Reliable Data Transfer

® [wo approaches to reliable data transfer at the
transport layer

® End-to-end ARQ

® Positive or negative acknowledgements

® End-to-end FEC

® Within each network layer packet

® Across several network layer packets

® Conceptually identical to operation at data link layer

Example: TCP

® TCP packets include a sequence

. Host A Host B
number and an (optional)
k led t b %69 =>
acknowiledgement number) \
seq =
® Sequence number counts bytes transmitted seq=7 \ ack = 6
seq = 8 \ ack =7
® Send cumulative positive acknowledgements seq= 9 \\(| ack = 8
® Acknowledgement specifies the next byte expected seq= 10 \\\
. o seq = | | \ aCk = 8
® Only acknowledge contiguously data packets (sliding \ \)I k=8
window protocol, so several data packets in flight) \\)I ack =
seq =8, ack = 8
® Duplicate acknowledgement implies loss seq = P

® Retransmit lost packets

)

Example: TCP

Host A Host B ® Packet reordering also
) causes duplicate ACKs
seq=>5
seq =6 \ ® Gives appearance of loss, when
seq =7 ack = 6 the data was merely delayed
seq =8 ack =7
eq=9 [k=T ® TCP use a triple duplicate
=10 k=9 .4
N ACK to indicate loss
seq = | f~—_ ~— ack = 10
e ack = 11 . . .
T~ ® Three identical ACKs in a row
o o] ack =12
£V = ® Slightly delays response to loss,

but makes TCP more robust to
reordering

Example: TCP

® Problem with cumulative ACKs: don’t signal any
packets received after the highest contiguously
received packet
® Eg.if packets |,2,3,5,6,and 7 are received, the ACK

will show 4 as the next packet outstanding, but won'’t
mention packets 5, 6,and 7

® | eads to unnecessary retransmissions

® Solution: Selective ACK (“SACK”) option to TCP

® But only supported by 68% of web servers, ten years after standardisation...

Connection Tear Down

® Three way handshake to tear
down a connection

® What happens if the last ACK
is lost?

A has closed the connection, so cannot
resend the ACK; B is still waiting

Unavoidable problem — B must eventually
give up, without knowing if the last packet
arrived

Data sent on last packet is potentially lost

Host B

TCP State Machine

® TCP uses a three way handshake to close connections

® Signalled by the FIN bit in the packet header

Established
(active close) Close/FIN "'.,.. FIN/ACK (passive close)

v FIN/ACK Y
FIN wait | Closing
ACKI- FIN+ACK/ACK ACK/- : Close/FIN
A2 FIN/ACK A 4
FIN walit 2 e | Ime VVait

Timeout/-
ACK/-

TCP State Machine

Complete TCP finite state machine: Connect/SYN
connection establishment and tear ——
H ose/-
down Listen/- Close/-
...]

RST/- Send/SYN

: SYN/SYN+ACK (simultaneous open)
B ACK/-

SYN+ACK/ACK

Established

Close/FIN | (active close) Close/FIN FIN/ACK (passive close)

v "y

FIN/ACK

FIN wait | Closing
ACKI- FIN+ACK/ACK ACK/- : Close/FIN
Y FIN/ACK — Y

TCP Connection Progress

Open connection:

192.168.0.4.49159 > 130.209.240.1.80:
130.209.240.1.80 > 192.168.0.4.49159:
192.168.0.4.49159 > 130.209.240.1.80:
Send “GET /index.html HTTP/1.1":

192.168
130.209

.0.4.
.240.

Send “Host:

192.168
130.209

.0.4.
.240.

49159 > 130.209.240.1.80:
1.80 > 192.168.0.4.49159:

www.dcs.gla.ac.uk”:

49159 > 130.209.240.1.80:
1.80 > 192.168.0.4.49159:

Send blank line:

192.168
130.209
Receive
130.209
130.209
192.168

.0.4.
.240.
web
.240.
.240.
.0.4.

49159 > 130.209.240.1.80:
1.80 > 192.168.0.4.49159:

page:

1.80 > 192.168.0.4.49159:
1.80 > 192.168.0.4.49159:
49159 > 130.209.240.1.80:

Server closes connection:

130.209
192.168
130.209
192.168
130.209

.240.
.0.4.
.240.
.0.4.
.240.

1.80 > 192.168.0.4.49159:
49159 > 130.209.240.1.80:
1.80 > 192.168.0.4.49159:

wn

o)

1033471698:1033471698(0) win 65535
3518203430:3518203430(0) ack 1033471699 win 5792
ack 3518203431 win 65535

1033471699:1033471725(26) ack 3518203431 win 65535
ack 1033471725 win 5792

1033471725:1033471746(21) ack 3518203431 win 65535
ack 1033471746 win 5792

1033471746:1033471748(2) ack 3518203431 win 65535
ack 1033471748 win 5792

3518203431:3518204879(1448) ack 1033471748 win 5792
3518204879:3518206327(1448) ack 1033471748 win 5792
ack 3518206327 win 65160

FP 3518206327:3518207344(1017) ack 1033471748 win 5792

ack 3518207345 win 64143
ack 1033471748 win 5792

49159 > 130.209.240.1.80: F 1033471748:1033471748(0) ack 3518207345 win 65535

1.80 > 192.168.0.4.49159:

ack 1033471749 win 5792

Questions!

