
Transport Layer (2)

Networked Systems Architecture 3
Lecture 13

Lecture Outline

• Modelling protocol behaviour

• Managing transport connections

• Connection establishment

• Reliable data transfer

• Connection tear down

Modelling Protocol Behaviour

• Can model protocols using
a finite state machine

• A set of states with transitions between
them

• The current state indicates what the
system is doing at any time

• Transitions show occurrence of events
and the response of the system

• Can be used to define the
behaviour of a protocol

Disconnected

Request sent

Connected

Send “connection requested”

Get “accepted”

Se
nd

 “
cl

os
e

co
nn

ec
tio

n”

Example: partial state machine for
opening and closing a connection

Get
“declined”

Managing Connections

• One role of transport layer: provide reliability

• How to reliably manage transport connections?

• Setup a reliable connection over an unreliable
connectionless network

• Transport data without loss over an unreliable
network

• Agree to tear down a connection

Disconnected

Connection Establishment

• How do two hosts agree to communicate?

Host A

T
im

e

Host B

T
im

e

Connection
requested

Connection
accepted

Request sent

Connected

Listening

Connected

Disconnected Listening

Request sent

Connected

Connected

Disconnected

Connection Establishment

• What if the initial request is lost?

Host A

T
im

e

Host B

T
im

e

Connection
requested

Connection
accepted

Request sent

Connected

Listening

Connected

Disconnected Listening

Request sent

Connected

Connected

x

Timeout &
retransmit

Disconnected

Connection Establishment

• What if the “connection accepted” reply is lost?

Host A

T
im

e

Host B

T
im

e

Connection
requested

Connection
accepted

Request sent

Connected

Listening

Connected

Disconnected Listening

Request sent

Connected

Connected

x

Timeout &
retransmit

Error: already connected!

Disconnected

Connection Establishment

• What if the “connection accepted” reply is lost?

• Sequence number in messages; random initial value

Host A

T
im

e

Host B

T
im

e

Connection
requested

Connection
accepted

Request sent

Connected

Listening

Connected

Disconnected Listening

Request sent

Connected

Connected

x

Timeout &
retransmit

Duplicate request
Retransmit “connection accepted”

seq = x

seq = x

Connected

Connection Establishment

• What if data from an old connection is still in
the network?

Disconnected

Host A

T
im

e

Host B

T
im

e

Connection
requested

Connection
accepted

Request sent

Connected

Listening

Connected

Disconnected Listening

Request sent

Connected

Connected

Delayed connection
accepted message

Error: already
connected!

seq = x

Accepting
connection
Accepting
connection

Connection Establishment

• Solution for robust connection establishment:
use a three-way handshake

Disconnected

Host A

T
im

e

Host B

T
im

e

Connection
requested

Connection
accepted

Request sent

Connected

Listening

Connected

Disconnected Listening

Request sent

Connected

seq = x

ack = x, seq = y

ack = y

Connected

Three Way Handshake

• Three way handshake ensures robustness

• Delayed control messages cause an acknowledgement
with incorrect sequence number, which is detected to
abort the connection establishment

• Hosts cannot reuse initial sequence number until the
maximum packet lifetime passed

• Requires hosts to keep state regarding previous connections, to avoid reuse

• Randomly chosen initial sequence number makes collisions unlikely if a host
crash causes state to be lost

SYN, ACK = x, seq = y

SYN, seq = x

Example: TCP Connections

• TCP connections use a
three way handshake

• Use the SYN and ACK flags in the
TCP header to signal connection
progress

• Packets contain sequence number
and acknowledgement number

Host A

T
im

e

Host B

T
im

e

ACK = y

Example: TCP Connections

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version = 4 Header Len DSCP ECN Total Length

Packet Identifier DF MF Fragment Offset

TTL Upper Layer Protocol Header Checksum

Source Address

Destination Address

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Offset Reserved Urg Ack Psh Rst Syn Fin Window

Checksum Urgent Pointer

[options - variable length]

[data - variable length]

IP

TCP

Data

TCP State Machine

Established

Listen

Closed

SYN recv’d SYN sent

Connect/SYN

Close/-
Close/-Listen/-

SYN/SYN+ACK

RST/- Send/SYN

SYN/SYN+ACK

SYN+ACK/ACKACK/-

(simultaneous open)

Action/Effect

• Shows client and server on same state diagram

• Additional transitions allow simultaneous open

Reliable Data Transfer

• Two approaches to reliable data transfer at the
transport layer

• End-to-end ARQ

• Positive or negative acknowledgements

• End-to-end FEC

• Within each network layer packet

• Across several network layer packets

• Conceptually identical to operation at data link layer

Example: TCP

• TCP packets include a sequence
number and an (optional)
acknowledgement number

• Sequence number counts bytes transmitted

• Send cumulative positive acknowledgements

• Acknowledgement specifies the next byte expected

• Only acknowledge contiguously data packets (sliding
window protocol, so several data packets in flight)

• Duplicate acknowledgement implies loss

• Retransmit lost packets

Host A

T
im

e

Host B

T
im

e

x

seq = 5

seq = 6

seq = 7

seq = 8

seq = 9

seq = 10

seq = 11

ack = 6

ack = 7

ack = 8

ack = 8

ack = 8

ack = 8seq = 8

seq = 9

Example: TCP

• Packet reordering also
causes duplicate ACKs

• Gives appearance of loss, when
the data was merely delayed

• TCP use a triple duplicate
ACK to indicate loss

• Three identical ACKs in a row

• Slightly delays response to loss,
but makes TCP more robust to
reordering

Host A
T

im
e

Host B

T
im

e

seq = 5

seq = 6

seq = 7

seq = 8

seq = 9

seq = 10

seq = 11

ack = 6

ack = 7

ack = 7

ack = 10

ack = 11

ack = 12

ack = 9

Example: TCP

• Problem with cumulative ACKs: don’t signal any
packets received after the highest contiguously
received packet

• E.g. if packets 1, 2, 3, 5, 6, and 7 are received, the ACK
will show 4 as the next packet outstanding, but won’t
mention packets 5, 6, and 7

• Leads to unnecessary retransmissions

• Solution: Selective ACK (“SACK”) option to TCP

• But only supported by 68% of web servers, ten years after standardisation...
[Medina, Allman, & Floyd, ACM CCR, Apr 2005]

Connection Tear Down

• Three way handshake to tear
down a connection

• What happens if the last ACK
is lost?

• A has closed the connection, so cannot
resend the ACK; B is still waiting

• Unavoidable problem → B must eventually
give up, without knowing if the last packet
arrived

• Data sent on last packet is potentially lost

FIN, ACK = x, seq = y

FIN, seq = x

Host A

T
im

e

Host B

T
im

e

ACK = y

TCP State Machine

Established

SYN recv’d

Closing

Time Wait

Close wait

Last ACK

FIN wait 1

FIN wait 2

Closed

Close/FIN Close/FIN FIN/ACK

Close/FIN

FIN/ACK

FIN+ACK/ACK

FIN/ACK

ACK/- ACK/-

ACK/-

Timeout/-

(passive close)(active close)

• TCP uses a three way handshake to close connections

• Signalled by the FIN bit in the packet header

TCP State Machine

Established

Listen

Closed

SYN recv’d SYN sent

Closing

Time Wait

Close wait

Last ACK

FIN wait 1

FIN wait 2

Closed

Connect/SYN

Close/-
Close/-Listen/-

SYN/SYN+ACK

RST/- Send/SYN

SYN/SYN+ACK

SYN+ACK/ACKACK/-

Close/FIN Close/FIN FIN/ACK

Close/FIN

FIN/ACK

FIN+ACK/ACK

FIN/ACK

ACK/- ACK/-

ACK/-

Timeout/-

(passive close)(active close)

(simultaneous open)

Complete TCP finite state machine:
connection establishment and tear
down

TCP Connection Progress
Open connection:
192.168.0.4.49159 > 130.209.240.1.80: S 1033471698:1033471698(0) win 65535
130.209.240.1.80 > 192.168.0.4.49159: S 3518203430:3518203430(0) ack 1033471699 win 5792
192.168.0.4.49159 > 130.209.240.1.80: . ack 3518203431 win 65535
Send “GET /index.html HTTP/1.1”:
192.168.0.4.49159 > 130.209.240.1.80: P 1033471699:1033471725(26) ack 3518203431 win 65535
130.209.240.1.80 > 192.168.0.4.49159: . ack 1033471725 win 5792
Send “Host: www.dcs.gla.ac.uk”:
192.168.0.4.49159 > 130.209.240.1.80: P 1033471725:1033471746(21) ack 3518203431 win 65535
130.209.240.1.80 > 192.168.0.4.49159: . ack 1033471746 win 5792
Send blank line:
192.168.0.4.49159 > 130.209.240.1.80: P 1033471746:1033471748(2) ack 3518203431 win 65535
130.209.240.1.80 > 192.168.0.4.49159: . ack 1033471748 win 5792
Receive web page:
130.209.240.1.80 > 192.168.0.4.49159: . 3518203431:3518204879(1448) ack 1033471748 win 5792
130.209.240.1.80 > 192.168.0.4.49159: . 3518204879:3518206327(1448) ack 1033471748 win 5792
192.168.0.4.49159 > 130.209.240.1.80: . ack 3518206327 win 65160
Server closes connection:
130.209.240.1.80 > 192.168.0.4.49159: FP 3518206327:3518207344(1017) ack 1033471748 win 5792
192.168.0.4.49159 > 130.209.240.1.80: . ack 3518207345 win 64143
130.209.240.1.80 > 192.168.0.4.49159: . ack 1033471748 win 5792
192.168.0.4.49159 > 130.209.240.1.80: F 1033471748:1033471748(0) ack 3518207345 win 65535
130.209.240.1.80 > 192.168.0.4.49159: . ack 1033471749 win 5792

Questions?

