Physical Layer

Networked Systems Architecture 3 Lecture 6

Lecture Outline

- Physical layer concepts
- Wired links
 - Unshielded twisted pair, coaxial cable, optical fibre
 - Encoding data onto a wire
- Wireless links
 - Carrier modulation
 - 802.11 PHY

The Physical Layer

- Physical layer concerned with raw transmission of bits
 - What type of cable or wireless link do you use?
 - How to encode bits onto that channel?
 - Baseband encoding
 - Carrier modulation

Wired Links

- Physical characteristics of cable or optical fibre:
 - Size and shape of the plugs
 - Maximum cable/fibre length
 - Type of cable: electrical voltage, current, modulation
 - Type of fibre: single- or multi-mode, optical clarity, colour, power output, and modulation of the laser

Unshielded Twisted Pair

- Electrical cable with two wires twisted together in a spiral
 - Unidirectional data: signal and ground
 - Twists reduce interference and noise pickup: more twists → less noise
- Cable lengths of several miles possible at low data rates; 100 metres at high rates
 - Noise increases with cable length
- Extremely widely deployed

Coaxial Cable

- Wire core surrounded by a layer of insulation, and a braided outer conductor
 - Wire core is the signal path; outer conductor provides shielding
- Better noise shielding than twisted pair
 - Longer distance at higher rates: Gbps over several miles
 - But much more expensive cables

A: Protective outer coating

B: Braided outer conductor

C: Insulating material

D: Inner conductor

Optical Fibre

- Glass core and cladding, plastic jacket for protection
 - It's made of glass: fragile don't try to bend the fibre!
- Unidirectional data: transmission laser at one end; photodetector at the other
 - Laser light trapped in fibre by total internal reflection
- Cheap to manufacture; very low noise:
 10s of Gbps over 100s of miles

(a)

Source: Tanenbaum, Copyright © 1996, Prentice-Hall

Optical Fibre

0.85µ laser easy to build in GaAs semiconductor

1.30µ and 1.55µ lasers give higher performance

Colour of transmission laser determines attenuation in the fibre → affects maximum possible fibre length

Comparison

Twisted Pair	Coaxial Cable	Optical Fibre
Cheap	Expensive	Cheap
Robust	Robust	Fragile
Good local area performance	Good local area, okay wide area	Good wide area performance

Wired Data Transmission

- Signal directly encoded onto the channel
 - Vary the voltage in an electrical cable, intensity of the light in an optical fibre
 - Analogue signals directly coded
 - Multiple digital coding schemes:
 - NRZ, NRZI, Manchester, 4B/5B, etc.
 - Different complexity, resilience to noise
 - Signal occupies baseband region: from 0Hz to HHz
 - H is the bandwidth of the signal

- Primarily for guided data transmission
 - Electrical cable or optical fibre
 - Not suitable for wireless since all share a single baseband channel
 - Use of modulated carrier waves allows several transmissions to coexist

Non-Return to Zero Encoding

• Encode a I as a high signal, a 0 as a low signal

Non-Return to Zero Encoding

• Encode a I as a high signal, a 0 as a low signal

- Limitations with runs of consecutive same bit:
 - Baseline wander
 - Clock recovery

Average signal level provides boundary between I and 0. Runs of consecutive same bit cause the average to drift, and can disrupt the discrimination function.

NRZ Inverted Encoding

 Encode a l as a change in signal value, a 0 as a constant signal

 Solves problems with runs of consecutive Is, does nothing for runs of consecutive 0s

Manchester Encoding

 Encode a I as a high-low signal transition, a 0 as a low-high signal transition

 Doubles the bandwidth needed, but avoids the problems with NRZ encoding

4B/5B Encoding

4-Bit Data Symbol	5-Bit Encoding
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

- Manchester encoding inefficient
 only 50% of link capacity used
- Alternative insert extra bits to break up sequences of same bits
 - Each 4 bit data symbol is changed to a 5 bit code for transmission; reversed at receiver
 - Transmit 5 bit codes using NRZI encoding
 - 80% of link capacity used for data

Example: Ethernet

4 twisted pairs per cable

3 twists per inch

24 gauge (~0.5mm) copper

100m maximum cable length

Baseband data with Manchester coding at 10 Mbps; 4B/5B coding at 100 Mbps

Wireless Links

- Wireless links use carrier modulation, rather than baseband transmission*
- Performance affected by:
 - Carrier frequency
 - Transmission power
 - Modulation scheme
 - Type of antenna, etc.

^{*} Ignoring ultrawideband, for now...

Electromagnetic Spectrum

Antenna size

→ frequency

Carrier Modulation

- A carrier wave is applied to the channel at some fixed frequency, C
- The signal is *modulated* onto the carrier
 - Shifts signal from baseband to carrier frequency
 - Allows multiple signals on a single channel
 - Provided carriers spaced greater than bandwidth, *H*, of the signal
 - (This is how ADSL and speech data share a single phone line)

Amplitude Modulation

Encode signal by varying the amplitude of the carrier wave

Simple, but poor resistance to noise

Frequency Modulation

Encode signal by varying the frequency of the carrier wave

More complex, but more resistant to noise

Phase Modulation

Encode signal by varying the phase of the carrier wave

Measure phase shift in degrees: how far ahead in the sine wave the signal jumps

Complex Modulations

- More complex modulation schemes allow more than one bit to be sent per baud
 - Use multiple levels of the modulated component
 - E.g. vary amplitude across four different levels, to transmit 2 bits per baud
 - Combine modulation schemes
 - E.g. vary both phase and amplitude
 - E.g. 9600 bps modems use 12 phase shift values at two different amplitudes
 - Extremely complex combinations regularly used

Example: 802.11 PHY

- Spread spectrum modulated carrier
 - Carrier frequency continually changes according to a pseudo-random sequence (to avoid interference)
 - Several frequencies centred around 2.4 GHz
- Uses a complex mixture of amplitude and phase modulation ("CCK modulation")
- Range varies with obstacles: ~100m

Questions?