# Communications Theory

Networked Systems Architecture 3 Lecture 5



#### Lecture Outline

- Information content of signals
- Capacity of a channel
- Physical limits of communication

## Information Theory

- Recall: communication happens when a signal is conveyed between source and destination via a channel
  - The channel has limited capacity
  - The amount of information in the signal determines if it will fit the channel
  - How to determine the amount of information in a signal, and the capacity of a channel?

## How are Signals Conveyed?

- Sender varies a physical property of the channel over time; receiver measures that property:
  - Voltage or current in an electrical cable
  - Modulation of a radio carrier
- Model as a mathematical function, g(t)



#### Information Content

Intuition: a more complex signal carries more information



 Use frequency domain analysis to demonstrate this mathematically

# Time and Frequency Domains



### Sines and Cosines



Sine wave: basis of frequency domain analysis



# Frequency and Amplitude



#### Addition of Sine Waves





Can build more complex waveforms by summing a sequence of sine waves

Infinite sequence: more harmonics → more accuracy

### Fourier Analysis

- Any well behaved periodic function can be constructed by summing a (possibly infinite) number of sines and cosines of varying frequency and amplitude
  - The frequency domain representation



Jean Baptiste Joseph Fourier, 1768-1830

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n cos(2\pi n f t)$$
Amplitude Frequency

# Fourier Analysis: Example (I)



ASCII character "b"

(a)





Source: Tanenbaum, Copyright © 1996, Prentice-Hall



$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

1 harmonic





# Fourier Analysis: Example (2)



Including more high frequency components (high harmonics) gives a more accurate representation

#### Information Content

- Frequency domain view allows us to visualise information content of a signal
  - More information → high frequency components
  - Limiting frequency range distorts signal alternatively
    - signal content defines needed frequency range

#### Channel Bandwidth Limits

- Real channels cannot pass arbitrary frequencies
  - Fundamental limitations based on physical properties of the channel, design of the end points, etc.
  - The channel bandwidth, H, measures the frequency range (Hz) it can transport

 Implication: a channel can only convey a limited amount of information per unit time

### Capacity of a Perfect Channel

- Bandwidth tells highest frequency that can be passed: analogue signal
- What about digital signals?
  - $R_{max} = 2H \log_2 V$ 
    - R<sub>max</sub> = maximum data rate (bits per second)
    - H = bandwidth
    - V = number of discrete values per symbol
  - Assumption: noise-free channel



Harry Nyquist, 1889-1976

| n | log <sub>2</sub> (n) |
|---|----------------------|
| I | 0.00                 |
| 2 | 1.00                 |
| 4 | 2.00                 |
| 8 | 3.00                 |

#### Noise

- Real world channels are subject to noise
- Many causes of noise:
  - Electrical interference
  - Cosmic radiation
     Different noise spectra
  - Thermal noise
- Corrupts the signal: additive interference

### Signal to Noise Ratio

 Can measure signal power, S, and noise power, N



- Gives signal-to-noise ratio: S/N
  - Typically quoted in decibels (dB), not directly
  - Signal-to-noise ratio in  $dB = 10 \log_{10} S/N$

| S/N  | dB |
|------|----|
| 2    | 3  |
| 10   | 10 |
| 100  | 20 |
| 1000 | 30 |

# Capacity of a Noisy Channel

- $\bullet \quad R_{max} = H \log_2(1 + S/N)$ 
  - R<sub>max</sub> = maximum data rate (bits per second)
  - H = bandwidth

#### Note:

- Channel subject to white noise
- Irrespective of number of discrete values per symbol



Claude Shannon, 1916-2001

# Capacity of a Noisy Channel



### **Implications**

- Physical characteristics of channel limit amount of information that can be transferred
  - Bandwidth
  - Signal to noise ratio
- These are fundamental limits: might be reached with careful engineering, but cannot be exceeded

### Questions?

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took
the Fourier transform of my cat...

Meow!

Source: http://xkcd.com/26/