Introduction to Networks (2)

Networked Systems Architecture 3 Lecture 2

Lecture Outline

- Network Protocols
- Protocol Layering
 - OSI Reference Model
- Protocol Standards

Network Protocols

- Communication occurs when hosts exchange messages across a channel
- For meaningful communication, those messages must be in a common language, and obey some common rules – these form a network protocol

Network Protocols: Language

• Are messages textual?

- What character set?
- Internationalisation and language?
- How is the grammar specified?What is the syntax? Semantics?
- Can binary data be embedded?

• Are messages framed?

 How to signal start and end of message?

Or binary?

- Big or little endian? 32 or 64 bit?
- Fixed or variable length codes?
- Alignment requirements?
- How is the grammar specified?
 What is the syntax? Semantics

Example: Morse Code

- An simple network protocol: telegraph using Morse code
 - Signal keyed on electrical cable forms channel
 - Patterns of dots and dashes is a protocol:

```
A •- J •--- S •••
B -••• K -•- T -
C -•-• L •-•• U ••-
D -•• M -- V ••--
E • N -• W •--
F ••-• O --- X -•--
G --• P •--• Y -•--
```


Samuel Morse

Network Protocols: Rules

 Is the protocol clientserver? Peer-to-peer?
 Multicast? Broadcast?

- How is access to the channel arbitrated?
 - What happens if two hosts try to send at the same time?
 - How is data encoded? How are hosts named?

- How are error reports handled? How do you know if messages were successfully received?
- Who is allowed to send messages? When?
 - How fast can messages be sent?
 - Do you need to wait for a reply before sending next message?

Protocol Layering

- Communications systems are typically organised as a series of protocol layers
 - Structured design to reduce complexity
 - Each layer offers services to the next higher layer, which it implements using the services of the lower layer – well defined interfaces
 - Highest layer is the communicating application
 - Lowest layer is the physical communications channel
 - Peers at some layer, i, communicate via a layer i protocol, using lower layer services

Protocol Layering: Example

- Web browser talking to a web server
- Simplified view with five protocol layers:
 - HTML
 - HTTP
 - TCP
 - IP
 - Ethernet

OSI Reference Model

Physical Layer

- Defines characteristics of the cable or optical fibre used:
 - Size and shape of the plugs
 - Maximum cable/fibre length
 - Type of cable: electrical voltage, current, modulation
 - Type of fibre: single- or multi-mode, optical clarity, colour, power output, and modulation of the laser
- For wireless links:
 - Radio frequency, transmission power, modulation scheme, type of antenna, etc.

Data Link Layer (I)

Structure and frame bit stream provided by the physical layer

	Start Code	Address	Control	Protocol	Data
10	01111110	10100111	00011011	0101000111010110	1011000100111011010

- Detect and correct errors on the link
 - Parity and error correcting codes
 - (Negative) acknowledgements + retransmission

Data Link Layer (2)

Media access control

- Some physical links (e.g.Wi-Fi) shared between multiple hosts
- Requires link layer addresses
 - Hosts have addresses on the link
 - Messages include source and destination addresses
- Arbitrate requests for access to the media; resolve collisions
- Ensure fair access to the link and provide flow control

Example: Ethernet with CSMA-CD

Network Layer

- Interconnects multiple links to form a wide area network from source host to destination host
 - Data delivery
 - Naming and addressing
 - Routing
 - Admission/Flow control
- Example: IP

Transport Layer

- End-to-end transfer of data from the source to the destination(s)
 - Transfers data between a session level service at the source, and corresponding service at the destination
 - May provide reliability, ordering, framing, congestion control, etc.
 - Depends on guarantees provided by the network layer
- Example:TCP

Session Layer

- Manages (multiple) transport layer connections
- Example session layer functions:
 - Open several TCP/IP connections to download a web page using HTTP
 - Use SMTP to transfer several email messages over a single TCP/IP connection
 - Coordinate control, audio and video flows making up a video conference

Presentation Layer

- Manages the presentation, representation, and conversion of data:
 - Internationalisation, languages, and character sets
 - Data markup languages (e.g. XML, HTML)
 - Data format conversion (e.g. big or little endian)
 - Content negotiation (e.g. MIME, SDP)
- Common services used by many applications

Application Layer

- User application protocols
 - Not the application programs themselves

- Examples:
 - Flickr, Facebook, Google Maps, etc.
 - Web services
 - Grid computing

OSI Reference Model

- Definition of OSI model was extremely political
 - None of the layers or layer boundaries should be considered sacrosanct
 - Doesn't reflect any deployed system architecture
 - But... very useful to guide thinking about systems architectures and implementations

Protocol Standards

- A (mostly) formal description of a protocol
- To ensure interoperability amongst diverse implementations
- Variety of standards setting procedures:
 - Open or closed standards development process
 - Free or restricted standards availability
 - Individual vs. corporate vs. national membership
 - Lead technical development or document existing practice

You are here!-

Political

Financial

Application

Presentation

Session

Transport

Network

Data Link

Physical

Key Standards Organisations

- Internet Engineering Task Force
 - http://www.ietf.org/ and http://www.rfc-editor.org/
- International Telecommunications Union
 - http://www.itu.int/ (part of the United Nations)
- 3rd Generation Partnership Project
 - http://www.3gpp.org/
- World Wide Web Consortium
 - http://www.org/

Questions?