Introduction to Networks (I)

Networked Systems Architecture 3
Lecture 1

Lecture Outline

- Administrivia
 - Aims, Objectives, and Intended Learning Outcomes
 - Course Outline
 - Labs and Assessment
 - Reading List
- Introduction to Networks

Administrivia

Contact Details and Website

Dr. Colin Perkins
 Room S154, Lilybank Gardens, but moving to
 Room 405, The Sir Alwyn Williams Building

Appointments by email: csp@dcs.gla.ac.uk

http://www.dcs.gla.ac.uk/~csp/teaching/nsa3/

Aims and Objectives

- To provide a solid understanding of the technologies that support modern networked computer systems
- To provide our undergraduates with the ability to see through the hype generated by telecommunications and computer networking vendors, and evaluate and advise industry on networking deployment

Intended Learning Outcomes

- Describe and compare capabilities of various communication technologies and techniques
- Know the differences between networks of different scale, and how these affect their design
- Describe the issues in connecting heterogeneous networks
- Describe importance of layering, and the OSI reference model

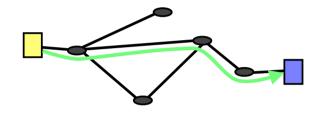
- Understand demands of different applications on quality of service requirements for the underlying communication network
- Understand a description of a LAN-based computer system, and explain the purpose and function of its various components
- Write simple communication software

Course Outline

Week	Tue 12:00-13:00	Wed 14:00-16:00	Thu 12:00-13:00
	Introduction to Networks		Introduction to Networks
2	Case Studies	Web Client (basic, file download only)	Socket Programming
3	Communications Theory		Physical Layer
4	Data Link Layer	Web Server (single connection)	Data Link Layer
5	Network Layer		Network Layer
6	Network Layer	Web Server (sequential, multiple connections)	Transport Layer
7	Transport Layer		Transport Layer
8	Applications	Web Server (concurrent, multiple connections)	Applications
9	Applications		Applications
10	Worked Example		

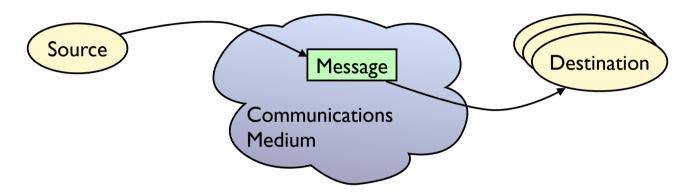
Labs and Assessment

- 8 weekly laboratory sessions
 - Network programming with C and pthreads on Linux
 - Practical work to complement theory from lectures
 - Students expected to attend all laboratory sessions
- No assessed course work: 100% Examination
 - Exam format: answer all three questions
 - Material covered in labs will be explicitly examined


Required Reading

- Any good text on computer networks, e.g.:
 - Tanenbaum, Computer Networks, 4th Edition, Prentice Hall, 2002, ISBN 0130384887
 - Peterson and Davie, Computer Networks: A Systems Approach, 3rd Edition, Morgan Kaufman, 2003, ISBN 1558608338
 - Stallings, Data and Computer Communications, Prentice Hall, 2003, ISBN 0131833111

Introduction to Networked Systems Architecture


What is a Networked System?

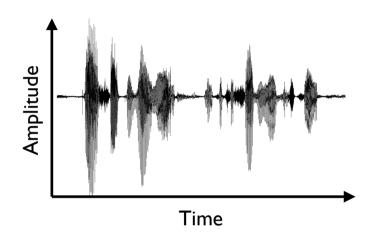
 Interconnected collection of communicating autonomous computing devices

- Interconnected direct or indirect, using optical fibre, copper wire, radio, etc.
- Computing device PC, phone, TV set-top box, etc.
- Distinct from a distributed system
 - Communication network is explicitly visible

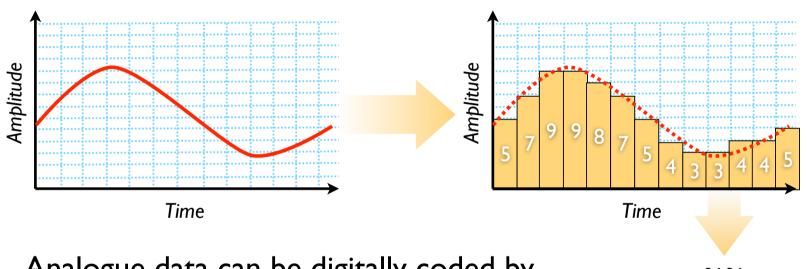
Communications Networks

- Data transferred from source to destination(s) in potentially size limited messages
 - Communication can be simplex, half- or full-duplex
 - Path through communications medium is a channel

Information


- Messages convey information
 - The amount of information in a message can be characterised mathematically – Information Theory
- Capacity of channels to convey information can also be modelled
 - How much? How fast? How much power used?
 - Physical limits exist on the capacity of a channel

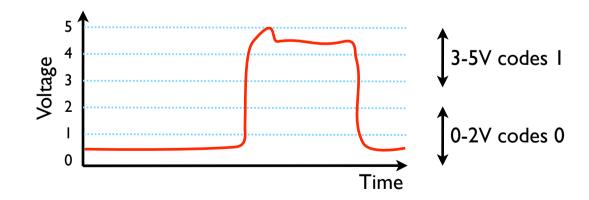
Signals


- Physical form of a message is a signal
 - May be a material object (carrier pigeon, CD, ...)
 - Usually a wave (sound, electrical signal, light, radio, ...)
- Signal may be analogue or digital
 - Analogue: a smooth continuum of values
 - Digital: a sequence of discrete symbols
 - Mapping information to symbols is known as coding

Analogue Signals

- Simplest analogue signal: amplitude directly codes value of interest
 - AM Radio, analogue telephones
- Can be arbitrarily accurate
- Susceptible to noise and interference on channel
- Difficult to process with digital electronics

Analogue Signals



Analogue data can be digitally coded by sampling at a suitable rate, quantising to the nearest allowable discrete value, and then converting to digital representation (PCM)

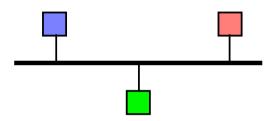
..

Digital Signals

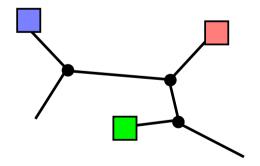
- Digital signals comprise a sequence of discrete symbols – fixed alphabet, not arbitrary values
- But underlying channel is almost always analogue
 - Coding maps analogue signal ranges to digital symbols

Baud Rate

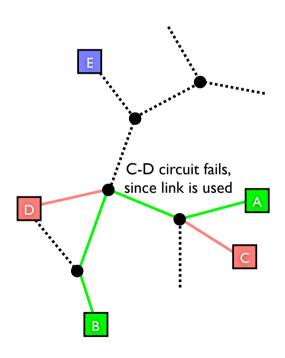
- Number of symbols transmitted per second is the baud rate
 - Binary codes common, using two distinct symbols
 - This is not a requirement radio communications and ADSL modems often use non-binary codes
 - E.g. Quadrature Amplitude Modulation with 16 symbols \Rightarrow 4 bits per baud


Channels and Network Links

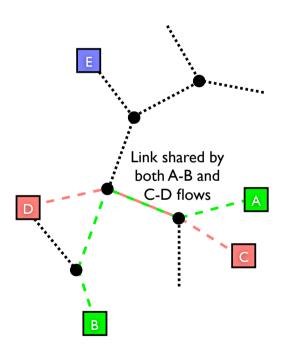
- A signal is conveyed via a channel
 - May be directly conveyed electrical signals in a cable
 - May be modulated onto an underlying carrier radio


 The combination of signal and channel forms a network link

From Links to Networks


 A network link can directly connect one or more hosts

- Alternatively, hosts might be connected via intermediate switches or routers
 - Circuit switched vs. packet switched



Circuit Switched Networks

- A dedicated circuit can be set up for A and B to communicate
 - A and B exchange arbitrary length messages
 - Guaranteed capacity once circuit is created
 - But the dedicated circuit can block other communications (e.g. the C to D path); the capacity of the network gives the blocking probability
 - Example: traditional telephone network

Packet Switched Networks

- Alternatively, messages can be split into small packets before transmission
 - Allows A-B and C-D to communicate at the same time, sharing the bottleneck link
 - Connectivity guaranteed, but the available capacity varies depending how many other people are using the network
 - Messages have size limits
 - Example: the Internet

Networked Systems

- All networked systems built using these basic components:
 - Hosts the source and destination(s)
 - Links physical realisation of the channel, conveying messages
 - Switches and routers connect multiple links
- Layered on top are network protocols which give meaning to the messages that are exchanged

Questions?