
Networked Systems Architecture 3: Laboratory Task 2

Dr. Colin Perkins

30 January 2008

1 Introduction

The aim of the second laboratory task is to write a simple web server. This will extend your knowledge of network
programming, illustrating how basic server applications are implemented.

Your web server should bind to port 8080, and listen for HTTP GET requests. It should parse the GET request
and any HTTP headers of interest to retrieve the name of the file requested. The filename should be interpreted
as being relative to the directory in which your server was started (i.e. if the server was run from directory
/users/staff/csp and received the request GET /index.html HTTP/1.1, it would return the contents
of /users/staff/csp/index.html). The server should also check the value of the Host: HTTP header
sent by the client, to ensure it matches the current hostname (use the gethostname() function to find the
hostname). The server will then respond to each request with a response containing appropriate HTTP headers,
followed by the data (the contents of the requested file).

If the hostname matches, and the requested file exists, a success (“200 OK”) response should be sent. An example
of a minimal successful response, returning an HTML page, is as follows:

HTTP/1.1 200 OK
Content-Type: text/html
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
...

(the “...” indicates that the output has been truncated). If the hostname of the server doesn’t match the Host:
header, or the requested file doesn’t exist, a “404 Not Found” response should be generated. An example “404
Not Found” response would be as follows:

HTTP/1.1 404 Not Found
Content-Type: text/html
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title> 404 Not Found </title>
</head>
<body>

1



<p> The requested file cannot be found. </p>
</body>
</html>

In all cases, the first line of the response indicates the version of HTTP used (HTTP/1.1) and the status of the
response (200 OK or 404 Not Found). This is followed by several header lines giving information about the
response, a blank line, and then the actual data requested. Once all the data is sent, the server closes the connection.

The Content-Type: header line tells the browser the format of the data – the first version of your server
should use text/html for everything, if you have time later you might want to choose an appropriate content
type based on the file extension. Finally, the Connection: close header line signals that the server will close
the connection after sending the data.

2 Implementation

You should implement your web server in C using the Berkeley Sockets library, running on Linux. You will use
many of the same sockets functions you used to write your basic web browser in the last task, with the addition to
functions to bind a port, then listen for connections, then accept a connection.

int bind(int fd, struct sockaddr *addr, socklen_t addrlen);

The bind() function binds a socket to a network address (addr is a pointer to a struct sockaddr_in, but
is cast to be a pointer to the “superclass” struct sockaddr). You should use port 8080, with an address of
INADDR_ANY (indicating that the server should bind to any network interface available). As usual, -1 is returned
on error.

Once the socket is bound to a port, it can be told to listen for connections:

int listen(int fd, int backlog);

The backlog parameter specifies the number of connections that can be outstanding (connected, but not yet
accepted) on the socket. For the purpose of this task, your server may exit after servicing a single connection, so
you may set the backlog to one. As usual, -1 is returned on error.

After a socket has been bound to a port and told to listen for connections, the accept() function is used to wait
for, then accept, a connection from a client.

int accept(int fd, struct sockaddr *addr, socklen_t *addrlen);

The accept() call fills in addr and addrlen with the address of the client. It returns -1 if an error occurs.
If successful, it returns a new file descriptor, representing the new connection. To send or receive data from
the connection, use the returned file descriptor (the original fd remains open, and can be used to accept new
connections later).

The close() function should be used to close both the original file descriptor returned from socket(), and
the per-connection file descriptor returned from the accept() function.

2



3 Notes

You should initially test your server using the web browser program you wrote in the last task (you’ll need to
write a simple HTML file to retrieve). Once that works, consider testing with a standard web browser (e.g.
Firefox). When connecting to your server using a standard browser, don’t forget to specify the port number
on the URL. For example, if your server runs on port 8080 of host bo720-1-01, then use a URL of the form
http://bo720-1-01.dcs.gla.ac.uk:8080/index.html in your browser.

When parsing the HTTP request and headers, consider using the string functions provided in the standard C library
(for example, the sscanf() function can be used to simply parse the GET request line).

You are again strongly advised to write a simple Makefile to compile your code, to enable all compiler warnings
(at minimum, use gcc -W -Wall), and to fix your code so it compiles without warnings.

A worked solution to this programming task will be provided in two weeks, when the third task is distributed.

3


