
Networked Systems Architecture 3: Laboratory Task 1

Dr. Colin Perkins

16 January 2008

1 Introduction

The laboratory sessions for the NSA3 module aim to introduce you to network programming in C on Linux
systems. There are eight weekly labs for this module, each two hours in length, in which you will complete four
tasks. These tasks are not directly assessed, but the material covered in the labs will be examined as part of the
final written examination. The four tasks are as follows:

Task 1: Write the world’s most basic web browser
Task 2: Write a basic web server, accepting a single connection
Task 3: Extend your web server to accept multiple connections in series,

and process multiple requests per connection
Task 4: Extend your web server to accept multiple connections in parallel

using the pthreads API

Two weeks are allocated to each task.

2 Background

A web browser uses the HyperText Transport Protocol (HTTP) to retrieve pages from a web server. The browser
makes a TCP/IP connection to the web server, sends an HTTP command over that connection, and reads the
response back. HTTP commands and responses are textual, making it possible to fetch a web page by hand,
manually typing the commands using the telnet program to open a TCP/IP connection to the web server. As an
example, we will fetch the web page at http://www.dcs.gla.ac.uk/index.html by hand.

Open a terminal window, and start the telnet program with the address of the server and the desired port number as
parameters: telnet www.dcs.gla.ac.uk 80 (HTTP usually uses port 80). You should see output similar
to the following (“-->” is my Linux shell prompt):

-->telnet www.dcs.gla.ac.uk 80
Trying 130.209.240.1...
Connected to crete.dcs.gla.ac.uk.
Escape character is ’ˆ]’.

This indicates that the telnet program has opened a TCP/IP connection to host crete.dcs.gla.ac.uk (the actual
machine for which www.dcs.gla.ac.uk is an alias, using IP address 130.209.240.1) on port 80. The server is
waiting for you to send it a command.

Commands in HTTP comprise an initial request line, followed by one or more header lines containing additional
information. To retrieve a page, use the GET request, specifying the page and the version of the HTTP protocol

1



used. For example send GET /index.html HTTP/1.1 to retrieve the page index.html from the server. The
GET request must be followed by a header to specify the name of the web site: Host: www.dcs.gla.ac.uk
(in case there are several sites hosted on the same server). The headers are followed with a blank line, to indicate
the end of the request. Try this out by typing the following into the telnet window you previously opened (hit
return twice after the Host: line, to get the blank line):

GET /index.html HTTP/1.1
Host: www.dcs.gla.ac.uk

The server should reply with an HTTP/1.1 200 OK response, several header lines providing information about
the response, a blank line, and then the HTML content of the page. Finally it will close the connection:

HTTP/1.1 200 OK
Date: Wed, 21 Nov 2007 12:13:14 GMT
Server: Apache/2.0.46 (Red Hat)
Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT
ETag: "57c0cd-e3e-17901a80"
Accept-Ranges: bytes
Content-Length: 3646
Connection: close
Content-Type: text/html; charset=UTF-8

<HTML>
<HEAD>
<TITLE>Computing Science, University of Glasgow</TITLE>
...
</BODY>
</HTML>
Connection closed by foreign host.
-->

Try this with several pages on the departmental web site, comparing what you see in your web browser, with the
raw HTML retrieved using telnet.

3 The World’s Most Basic Web Browser

Having seen the basic operation of HTTP, your first task is to write a C program to retrieve a page from the main
departmental web site (e.g. http://www.dcs.gla.ac.uk/index.html). This program will send the
commands you have just typed by hand, then retrieve and print the headers and HTML code of the response.

To complete this task, you will use Berkeley Sockets library. This is the standard low-level networking library on
Linux and other Unix-like systems (including MacOS X), and is virtually identical to the WinSock networking
library used on Microsoft Windows. The following sections describe the sockets functions you will use.

3.1 Header Files

In order to use the sockets library, you must include the following header files in your code:

#include <arpa/inet.h> // For inet_pton()
#include <sys/types.h> // Supporting types

2



#include <sys/socket.h> // For socket() and connect()
#include <netinet/in.h> // For struct sockaddr_in
#include <stdio.h> // For perror(), printf(), etc.
#include <unistd.h> // For read(), write(), and close()

3.2 Creating a Network Socket

The first task in network programming is to create a socket. This is a representation of a network connection,
which your program accesses via a file descriptor. To create a socket, call the socket() function, which has a
prototype as follows:

int socket(int domain, int type, int protocol);

The socket() function takes three parameters (domain, type, and protocol, each of which is an int) and
returns an int value.

The domain parameter indicates whether the socket is an Internet socket, or if some other network is to be used.
You should use the value AF_INET to indicate that you’re using the Internet Protocol, IP (AF_INET is an integer
constant defined in the <sys/socket.h> header). The type parameter for sockets in the AF_INET domain
is used to specify TCP or UDP: use SOCK_STREAM to create a TCP socket, and SOCK_DGRAM to create a UDP
socket. The protocol argument is not used for sockets in the AF_INET domain, and should be zero.

The return value from the socket() call is an int file descriptor. This should be assigned to a variable, and
is used by all the other calls in the sockets library to indicate which socket they should operate upon. If an error
occurs, the value -1 is returned, otherwise the value will be a small positive integer.

Putting this together, your program should create a socket as in the following code fragment (“...” indicates
where other code has been omitted):

...
int fd;
...
fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd == -1) {

perror("unable to create socket\n");
exit(1);

}
...

3.3 Connecting to a Server

Once you have created a socket, you can open a connection to the server. This is done using the connect()
function, which has the following prototype:

int connect(int fd, struct sockaddr *name, socklen_t namelen);

The fd parameter is the file descriptor returned by the call to the socket() function. The name and namelen
parameters give the IP address and port of the server to which you wish to connect. The departmental web
server has IP address 130.209.240.1 and runs on port 80. To specify an IP address, create a variable of type
struct sockaddr_in (a “subclass” of the struct sockaddr required by connect()) and fill in the
appropriate details. The struct sockaddr_in is defined in the <netinet/in.h> header as:

3



struct sockaddr_in {
uint8_t sin_len;
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_pad[8];

};

Of the five fields in struct sockaddr_in, you need set only sin_family, sin_port, and sin_addr.
This is done as in the following example:

...
struct sockaddr_in addr;
socklen_t addr_len = sizeof(addr);
...
addr.sin_family = AF_INET;
addr.sin_port = htons(80);
inet_pton(AF_INET, "130.209.240.1", &(addr.sin_addr));
...

The inet_pton() function converts an Internet address from textual (“presentation”) format to the numeric
format used internally by the system (note this is given a pointer to the sin_addr field, so it can change the
value). The htons() function converts the port number from host byte order (which is little-endian on Intel
CPUs) to standard network byte order (which is always big-endian).

When the address has been filled in, it can be passed to the connect() function (remember that connect()
takes a struct sockaddr *, so you’ll have to cast to the appropriate pointer type). The connect() function
returns 0 if a connection is opened, and -1 if an error occurs.

Lecture 4 will show how to extend this to pass a hostname, instead of an IP address.

3.4 Sending a Request

Once the connection is open, data can be sent to the server using the write() function:

ssize_t write(int fd, void *buf, size_t buflen);

The fd parameter is, once again, the file descriptor returned by the socket() function. The buf parameter
is a pointer to the data to send to the server, while buflen is the amount of data to send (don’t forget to count
newlines, spaces, etc.). Since buf is a void * pointer, any type of data can be sent. For the purpose of this
exercise, you should pass a char array containing the HTTP request and any headers needed.

The write() function returns the number of bytes successfully sent to the server, or -1 on error.

3.5 Retrieving a Response

The response can be retrieved from the server using the read() function:

ssize_t read(int fd, void *buf, size_t buflen);

4



The fd parameter is, once again, the file descriptor returned by the socket() function. The buf parameter is a
pointer to a buffer in which to place the data returned from the server (usually a char array), and buflen is the
size of that buffer.

The read() function returns the number of bytes successfully read from the server, 0 when the connection is
closed, or -1 on error.

Since you don’t know the amount of data that the server might return, your client should enclose the read() call
in a loop, reading data until either the connection is closed, or all the expected data has been received.

3.6 Closing the Connection

Finally, the client can close the connection to the server:

int close(int fd);

Like the other network functions, close() returns -1 if an error occurs (e.g. if the server crashes while the
connection is being closed).

4 Notes

The initial version of your program should use a hard-coded IP address for the server and the file to retrieve. It
should display the entire response from the server, without any formatting. If you have time after completing the
initial version of the program, the following extensions should be attempted:

• Extend the program to use a hostname rather than a raw IP address, looking up the hostname in the DNS.
Lecture 4 will outline how to do this.

• Extend the program so the hostname and file to be retrieved can be specified on the command line, rather
than being hardcoded.

• Extend the program to just display the HTML code, suppressing the headers sent by the server. Parse the
headers, to report an error message if the requested file cannot be found.

The Linux manual pages provide detailed information on the sockets library functions in section 2 of the manual
(e.g. man 2 socket). The book “Unix Network Programming, Volume 1 (3rd Edition)” by W. Richard Stevens,
Bill Fenner, and M. Andrew Rudoff is the standard reference reference book for the sockets library and network
programming in C.

You are strongly advised to write a simple Makefile to compile your code, to enable all compiler warnings (at
minimum, use gcc -W -Wall), and to fix your code so it compiles without warnings.

A worked solution to this programming task will be provided in two weeks, when the second task is distributed.

5


