Review of Major Concepts

Richard Sinnott Colin Perkins John Watt

http://csperkins.org/teaching/2004-2005/gc5/

Aims of This Module

Grid Computing is a developing area:

- Our understanding of the problem space is still evolving
- Systems and standards change frequently
- Many open research issues
- No-one has all the answers

Accordingly, we aim to:

- Produce Grid-savvy individuals
- Encourage critical thinking about Grid-related technology
- Pique your interest in Grid-related research issues

Intended Learning Outcomes

- Thorough grounding in the architecture of the Grid, and exposure to various implementations of the infrastructure
- Experience in using one particular implementation to construct a Grid-based application
 - Competence in Grid programming
 - Exposure to large-scale cluster computing facilities
- Awareness of current open research issues relating to the Grid architecture and infrastructure
 - How do they differ from distributed systems?
 - What are the challenges in making Grids work?

Material Covered

- Introduction to Grid Computing
- Scalability and Heterogeneity
- Open Standards and Architectures
- Implementations of the Grid Architecture
- Resource Discovery/Information Services
- Web Services
- Technologies for Building Grids
- Grid Security Concepts
- Virtual Organizations

- Security in Practice
- Job Scheduling and Management
- Workflow Management
- Data Access, Integration & Management
- Data Provenance and Curation
- Bulk Data Transfer
- Peer-to-Peer Communication
- Tools for Collaboration
- Sample Applications
- The Future of Grid Computing

Introduction to Grid Computing

Infrastructure for Internet-scale Distributed Systems

- "A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities"
- Main challenge in building a Computational Grid: to integrate the disparate resources a virtual organization needs:
 - Service and resource management protocols
 - Security solutions
 - Scheduling and workflow management
 - Data management/Provenance services
 - Scalable and efficient data transfer services
 - Tools for collaborative work

Scalability and Heterogeneity

- The two biggest challenges to designing a computational grid are heterogeneity and scalability
 - Heterogeneous of users, networks and organizations
 - Scalability of Data Storage & Distribution
 - Scalable Scheduling
 - Naming, Addressing and Middleware
 - Robustness and Fault Tolerance
 - System Configuration Management
- These distinguish grids from traditional distributed systems

Open Standards and Architectures

- Driven by technology
 - Globus toolkit v1, v2
- Move to OGSA
 - Aims for usability, extensibility,
 site autonomy, no central mgt, ...
 - Pre-March 2004 OGSI Grid services
 - Stateful, persistent/transient services, service data ...
 - Post-March 2004, move towards more pure web service
- OGSA and associated technologies moving targets
 - Work in progress; Standards in complex area
 - Challenges in software engineering, paradigm shifts
 - Technologies; Globus toolkit v3, v4
 - Challenges in understanding scientific domain shaping software/standards
 - OGSA standard vs. set of guidelines
 - Issues of conformance, compliance, consistency to OGSA architecture?

Implementations of Grid Architecture

- Apple X-Grid, .NET, 'Condor', Globus
- Globus Alliance produces Globus Toolkit + helps define grid standards. GT "de facto' grid technology" (New York Times)
- GT3 is a useable implementation of OGSI (hence OGSA)
- Three pillars:
 - Resource management, information services, data management
 - All pillars use GSI at the connection layer
- Resource Management Requirements
 - Create job environment, stage files, submit to a scheduler, monitor and send notifications, stream jobs output
 - -GT2-GRAM
 - GT3 Managed Job Service
- GT3 Job submission based on Grid Service Factory model
 - Service creation, invoke operation, control job

Resource Discovery/Information Management

- System information critical to operation of grid
 - What resources are available? What is the 'state' of the grid? How to optimise resource use (tailor to specific app)
- Any information infrastructure should provide mechanisms for:
 - Discovery, monitoring, planning, adapting application behaviour
 - Solve problems of distribution and diversity, failure management, security
- Two entities: information providers, and index services
- Implementations:
 - MDS2 Meta Directory Service based on LDAP
 - GRIS 'White' and 'yellow' pages lookup
 - GIIS cache like a web search engine
 - MDS3 Uses XML serviceData to publish information by query or subscription
 - xPath queries on XML, notifications
 - GT3 Index Service ALL info published through ONE service

Web Services

Web Services Overview

Locate service
WSDL

Client

Communicate
through SOAP

Web Service
Provider

- Technologies associated with web services
 - Extensible Mark-Up Language (XML)

Technologies for Building Grids

 Major Java environment packages for writing and deploying Java services and clients

- J2EE, JWSDP, ...
- Basic concepts of containers
 - Axis, Tomcat
- JAX-RPC basics
- Basics of deploying to containers
- Introduction to the ANT tool

Various examples of seeing these technologies being used

Grid Security Concepts

- Why is Grid security so important?
- The Challenge of Grid Security
- Technical challenges
 - Technologies to help make Grids secure
 - Public Key Infrastructures
 - Security always depends on the weakest link
- Concepts
 - Authentication
 - Authorisation
 - Audit/accounting
 - Confidentiality
 - Privacy
 - Integrity
 - Fabric management
 - Trust

- Social challenges
 - Educating users in security issues
- Manageability
 - Systems must be easily configurable, changeable when security threats arise / have arisen
- Usability
 - Systems must be usable by noncomputer scientists
- Scalability
 - Must allow for a multitude of different classes of user

Virtual Organizations

• VO - dynamic collection of distributed resources shared by dynamic collection of users from one or more organizations

- VO local vs global policies
 - Broad array of requirements from applications
 - Security, data management, high throughput computing...
- Technologies for VOs
 - Authorisation, rules ala PERMIS
 - Generic Grid solutions GGF SAML AuthZ
 - Must deal with potentially huge number of users, resources

Security in Practise

- Focus on Grid Security Infrastructure (GSI)
 - Secure comms, site policy control, single sign-on
- Digital Certificates
 - X509, Certification Authority, digital signatures, mutual authentication
 - Delegation
 - Allows single sign-on to grid resources through proxy certificates
- GSI Implementation
 - Authentication: grid-proxy-init
 - Authorization: grid-mapfile
 - Improved security model GRIM
 - Services connected to the network run under restricted account worst case scenario denial of service
- Others
 - RBAC (e.g. PERMIS ACs, Roles)

Job Scheduling and Management

- Job Scheduling and Management Concepts
 - Resource Discovery
 - Job Allocation and scheduling;
 planning vs. scheduling
 - Code and Data Distribution
 - Need for middleware
 - Need for predictable, secure, robust and faulttolerant execution environment
- Implementations
 - Condor, OpenPBS, Sun Grid Engine, Xgrid
 - GRAM, Condor-G
- Fundamental issues to consider:
 - Communication latency
 - Organization policy
 - Robustness and fault tolerance

Diverse applications

Wide-area schedulers and resource brokers

Hardware, software

Workflow Management

- New field. No standards. Try to bring the Grid to the user, not user to the Grid.
 - Represented by an XML-based workflow definition language
 - BPEL4WS, XPDL, SWFL...
 - Use graphical representation to construct the XML description
 - Use VSCE visual connection on a 'canvas' e.g. Taverna
 - Submit constructed workflow to enactment engine

• Challenges:

- Semantic compat. links services with similar meaning different names
- Syntactic compat. links services with common data types
- Problem of determining and comparing behaviours of interacting services
 - Additional metadata on service provenance and semantics
 - Services in workflow may not bind to specific service instances at runtime
 - Compile 'n link
- Issues parameter constraint, IDs, security, engineering

Data Access, Integration and Management

• Requirements:

- Wish to access data directly from sources and resources (telescope, DB)
- Want to be able to access ALL types of data in EVERY format
- Access data in non-application specific repositories
- Data publishing, operations, access control, provenance

OGSA-DAI

- Middleware to grid-enable existing databases
- Aims to provide a component library to allow
 - Common interface to data resources, integration of distributed queries
- Uses grid data service factory (GDSF) model
- Projects: FirstDIG, ODDGenes
- Underlying technologies (GT based)
 - GridFTP, RFT, Replica Location, XIO API

Data Provenance and Curation

- Longevity?
 - what to keep? we can't keep it all ... we don't even want to keep it all...
 - therefore what to mark with provenance information
- Keeping track of this information in a Grid environment
 - copies of copies,
 - then the issues of keeping track of provenance for these copies merging result sets?
 - provenance information likely to add huge bloat over time how to manage/control this?
- How do we do this anyway
 - what technologies XML?
- Do we need provenance/curation services,
 - what would/should these look like?
 - who does the mark-up?
 - how do they do this?
 - e.g. applications processing data automatically include provenance information on results
 - can we leave it for centres such as NDCC to provide services we can all use?
 - Is curation/provenance something that the Grid community needs to address?
 - Can we leave it for others, e.g. DB community?
- How can we make it all usable?
 - "...run job X with data Y (all sorts of provenance info on data goes here) on some Grid infrastructure (possibly 1000+ resources) and put results on computer Z" to do this right, we need to ensure that all information on what job/what location/what machine architecture/what OS/what time/... etc can be obtained from results so that others could in principle check our results/repeat our experiment etc etc

Bulk Data Transfer

- TCP congestion control
- Limitations of TCP/IP for high performance networks

$$T = \frac{s}{R\sqrt{\frac{2p}{3} + 3p(1 + 32p^2) \cdot T_{rto}\sqrt{\frac{3p}{8}}}}$$

Parallel streams

Modify the TCP congestion response

- E.g. High Speed TCP, Scalable TCP, H-TCP

Replace TCP (e.g. XCP)

Modify the IP layer to avoid congestion

- Integrated and Differentiated Services
- MPLS and Optical Switching

Peer-to-Peer Communication

- How peer-to-peer might be used by Grid computing systems
- Operation of distributed hash tables
- Uses of distributed hash tables
 - Object location systems
 - File sharing applications
 - Publish/subscribe event notification systems
- Distributed monitoring and aggregation systems
 - e.g. Astrolabe
- How NAT and firewalls affect peer-topeer application deployment

Tools for Collaboration

Multimedia protocol stack: separate media + signalling Components that form a collaborative work system

Copyright © 2004 University of Glasg

Sample Applications

- Physics
 - Particle physics, gravitational waves, astrophysics, ...
- Engineering
 - Electronic, civil, mechanical, aerospace, ...
- Computer science
 - Simulation, information retrieval, text mining, ...
- Life sciences
 - Exponential data growth
 - Genomes everywhere
 - Structure DBs
 - Clinical data sets
 - ...
 - Expanding application base
 - Amazing demonstration of BRIDGES
 - It really did work on Friday morning!

The Future of Grid Computing

- Classification of Grids
 - Compute Grids, Data Grids, Complexity Grids,
 Campus Grids (focused on Glasgow), Enterprise Grids, Semantic Grids,
 Lightweight Grids, Collaboration Grids, Autonomic Grids
- OGSA Future
 - WSRF
- Future application drivers
 - All domains
 - Social sciences
 - Environmental sciences
 - Physical sciences
 - Production level services for particle physics in 2007
 - Arts,
 - •
 - Life sciences biggest driver for future?
 - Data data everywhere, linkage to clinical, medical, genomic, ...
 - In-silico research, big business, ...

Borrowed from Malcolm Atkinson talk

Copyright © 2004 University of Glasg

Wrap-Up

- Exam will take place after Easter
 - Sample paper available next semester
 - Revision lecture will likely be in April
 - (dates to be confirmed)
- Programming assignment due tomorrow at 5pm
- Tutorial tomorrow: "Q&A"...any interest? Or should we cancel?

 Please hand in any remaining module questionnaires to the teaching office

pyright © 2004 University of Glasgow