Sample Applications

Dr. Richard Sinnott

http://csperkins.org/teaching/2004-2005/gc5/

Foundation for e-Science

- e-Science methodologies transforming science, engineering, medicine and business
 - driven by exponential growth in data, compute demands
 - enabling a whole-system approach

Data Grids for High Energy Physics

pyright © 2004 University of Glasgow

Physicist workstations

Global in-flight engine diagnostics

Virtual Observatories

- •Huge data sets
 - •AstroGrid over 15TB data first week online
- Huge computations
 - •Cross referencing data
 - •Remove all junk from data sets
 - satellites, aeroplanes...

Next Generation Transistor Design

1 Monolayer of suboxide

SCM

silicon

Life Sciences

- Extensive Research Community
 - >1000 per research university
- Extensive Applications
 - Many people care about them
 - Health, Food, Environment
- Interacts with virtually every discipline
 - Physics, Chemistry, Maths/Stats, Nano-engineering, ...
- 450+ databases relevant to bioinformatics (and growing!)
 - Heterogeneity, Interdependence, Complexity, Change, ...
- Wonderful Scientific Questions
 - How does a cell work?
 - How does a brain work?
 - How does an organism develop?
 - What happens to the biosphere when the earth warms up?
 - Why do people who eat less tend to live longer?
 - **...**

Yersinia pestis

Arabidopsis thaliana

Buchnerasp. **APS**

Aquifex aeolicus

Archaeoglobus fulgidus

Borrelia burgorferi

Mycobacterium tuberculosis

elegans

Caenorhabitis Campylobacter jejuni

Chlamydia pneumoniae

Vibrio cholerae

Drosophila melanogaster

Escherichia Thermoplasma coli acidophilum

Helicobacter pylori

Mycobacterium *leprae*

mouse

Neisseria meningitidis **Z2491**

Plasmodium falciparum

Pseudomonas Ureaplasma aeruginosa

urealyticum

rat

Rickettsia prowazekii

Saccharomyces Salmonella cerevisiae

enterica

Bacillus subtilis

Thermotoga maritima

Xylella fastidiosa

Distributed and Heterogeneous data

Sequence

LPSYVDWRSA GAVVDIKSQG ECGGCWAFSA IATVEGINKI TSGSLISLSE QELIDCGRTQ NTRGCDGGYI TDGFQFIIND GGINTEENYP YTAQDGDCDV

Structure

Function

Gene expression

Morphology

Data Sets associated with Systems-Biology

Database Growth

- DBs growing exponentially!!!
 - Biobliographic (MedLine, ...)
 - Amino Acid Seq (SWISS-PROT, ...)
 - •3D Molecular Structure (PDB, ...)
 - Nucleotide Seq (GenBank, EMBL, ...)
 - Biochemical Pathways (KEGG, WIT...)
 - Molecular Classifications (SCOP, CATH,...)
 - •Motif Libraries (PROSITE, Blocks, ...)

Bioinformatics Grid Needs

Workflow / Virtual Organisatio

2 TRANSLATE 5

AN DNA SEQUENCE

BioInf community,
Database schemas, ...

WSDL descriptions, Semantic grid,

q (long arm)

HUMAN CHROMOSOME 3
p (

UDDI repositories, BioInf portals,

OGSA_DAI/DAIT, IBM DiscoveryLink,

FRUIT FLY (Drosophila

Grid engineering (scheduling, resource reservation, workflow enactment, ...)

A K T S ... BASED ON STRUCTURE ON PROTEIN FROM A NO ORGANISM (red area encoded by the sequidata shown)

National Data curation centre

Single sign on authentication, Granularity of authorisation

Goble myGrid presentation

Is Grid the Answer?

- Key problems to be addressed
 - Tools that <u>simplify</u> access to and usage of data
 - Internet hopping is not ideal!
 - Tools that <u>simplify</u> access to and usage of large scale HPC facilities
 - **qsub** [-a date_time] [-A account_string] [-c interval] [-C directive_prefix] [-e path] [-h] [-l] [-j join] [-k keep] [-l resource_list] [-m mail_options] [-M user_list] [-N name] [-o path] [-p priority] [-q destination] [-r c] [-S path_list] [-u user_list] [-v variable_list] [-V] [-W additional_attributes] [-z] [script]
 - Tools designed to <u>aid understanding</u> of complex data sets and relationships between them
 - e.g. through visualisation

Access to and Usage of Data

- Grid technology should allow to
 - hide heterogeneity,
 - deal with location transparency,
 - address security concerns,
 - **–** ...
- Data Access and Integration Specification (DAIS) being defined by GGF
 - OGSA-DAI and DAIT projects key role in shaping these standards
- Other commercial solutions (IBM Information Integrator, ...)
 - More later!

Access to and Usage of HPC facilities

- Consider whole genome-genome (2*3*10^9 bp) comparisons between two species
 - Current strategy essentially chops up one genome and fires searches for those fragments in the other then re-assembles results
 - messy approximate matching re-assembly difficult
 - important correlations can be lost
 - to make this tractable so called junk DNA ignored
 - chopping may introduce artefacts or hide phenomena

- ➤ Better to put both full genomes in memory and perform a useful complete comparison
- ➤ Only possible with very high-end machines (available via grids)
- Should not have to be script writer/Linux sys-admin to use these facilities

Cognitive aspects of Data

- Life science data can be "ugly"
 - Raw data sets messy
 - Requires significant effort to understand
 - Schemas/data models evolving
 - **–** ...
- Tools needed to
 - Simplify understanding
 - Improve analysis
 - Navigate through potentially huge data sets
 - e.g. to find genes of interest in chromosomes of different species

Overview of BRIDGES

- <u>Biomedical Research Informatics Delivered by Grid Enabled Services</u> (BRIDGES)
 - NeSC (Edinburgh and Glasgow) and IBM
 - 2 year project (£330k) funded by DTI started October 2003
- Supporting project for CFG project
 - Generating data on hypertension
 - Rat, Mouse, Human genome databases
- Variety of tools used
 - BLAST, BLAT, Gene Prediction, visualisation, ...
- Variety of data sources and formats
 - Microarray data, genome DBs, project partner research data, ...
- Aim is integrated infrastructure supporting
 - Data federation
 - Security

Bridges Project

Where we are today!

- Information Integrator DB repository established and populated
 - ... with public data sets (OMIM, HUGO, RGD, SWISS-PROT)
 - ... linked to relevant resources (ENSEMBL- rat, human, mouse, MGI)
- GT3 based Grid services developed (BLAST) using own meta-scheduler
 - General usage of ScotGrid and local Condor pool
- Portal developed using IBM WebSphere
- Genome visualisation browsers
 - SyntenyVista for viewing synteny between local/remote data sets
 - MagnaVista for exploring genetic information across multiple (remote) resources
- Gaining experience with security technologies
 - Setting up policies with Grid security authorisation software etc
- Rolled-out Alpha version of system to CFG group July '04

www.nesc.ac.uk/hub/projects/bridges

Lessons learned

- Public data resources openness
 - Often cannot query directly
 - Often not easy/possible to find schemas
 - Joint Data Standards Study investigating this
 - Started on 1st June and involves
 - Digital Archiving Consultancy
 - Bioinformatics Research Centre (Glasgow)
 - NeSC (Edinburgh and Glasgow)
 - Look at technical, political, social, ethical etc issues involved in accessing and using public life science resources
 - Will liase with NDCC
 - Interview relevant scientists, data curators/providers
 - 8 month project with final report in January
 - Funded by MRC, BBSRC, Wellcome Trust, JISC, NERC, DTI
- GT3 not without pain! (... understatement!!!!)
 - Hopefully GT4 will be better?

Complexity of Biological Data

VOTES

- Virtual Organisations for Trials and Epidemiological Studies
 - 3 year (£2.8M) MRC funded project expected to start imminently
 - Plans to develop <u>framework for producing Grid infrastructures</u> to address key components of clinical trial/observational study
 - Recruitment of potentially eligible participants
 - Data collection during the study
 - Study administration and coordination
 - Involves Glasgow, Oxford, Leicester, Nottingham, Manchester, Imperial

Scottish Bioinformatics Research Network

- Four year proposal (£2.5M) expected to start imminently
 - Funded by Scottish Enterprise, Scottish Higher Education Funding Council,
 Scottish Executive Environment and Rural Affairs Department
 - Involves Glasgow, Dundee, Edinburgh, Scottish Bioinformatics Forum
 - Aim to provide bioinformatics infrastructure for Scottish health, agriculture and industry
 - Infrastructure support at Dundee, Edinburgh and Glasgow to support first-rate research in bioinformatics at each academic institute
 - Infrastructure support at three institutes, to support inter-institutional sharing of compute and data resources through application of Grid computing
 - Outreach and training activities mediated by the Scottish Bioinformatics Forum

Conclusions

- Numerous application domains exploring e-Science/Grid technologies
- Consolidation of know-how/technologies essential
 - EGEE
 - OMII
 - UK e-Science task forces (ETF, STF, ATF, ...)
 - NDCC
 - NeSC
- Do we know how best to build Grids?
 - Different domains coming up with own ways of building Grids
 - OGSA needed asap
 - Clear that various domains have issues which must be resolved before
 Grid can make significant and long lasting impact