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Motivation

• Scientific experiments and data analysis
– Particle physics experiments like the Large Hadron Collider

• Petabytes per year for approximately the next 15 years

– Large scale distributed data repositories (“virtual observatories”) for the
astronomy and earth sciences communities

– Human genome and similar biotechnology projects

• Commercial interests
– Film and television production and special effects industries

• Uncompressed HDTV is 120 megabytes/second; cinema content ~16× more

– Large scale database replication and backup

⇒Requirement for predictable and high performance transfer of
large data sets across TCP/IP networks
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Lecture Outline

• Review of TCP/IP

• Bulk Data Transfer Using TCP/IP
– Performance Limitations

• How to Improve Transfer Performance
– Parallel Streams

– Modifications to TCP/IP

– New Transport Protocols

– Enhanced Quality of Service

• Deployment and Standardisation of Alternatives
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Review of TCP/IP

• TCP/IP ensures reliable, in-order, delivery of a byte stream over
an unreliable packet network
– Each packet is acknowledged, reliability through retransmission

– Sliding window congestion control adapts sending rate to network capacity

… Byte
stream …

Byte
stream

Application Application

Send buffer

TCP/IP

Receive buffer

TCP/IP
Network

Data packets

Acknowledgements

The TCP protocol controls
the transfer rate, and when
packets are released to the
application, based on the
network conditions
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TCP Reliability

• Packets contain a checksum to detect corruption

• Packets contain a sequence number to detect loss

• Receiver sends an acknowledgement containing the highest
contiguous sequence number received each time a packet is
received

• Sender uses duplicate sequence numbers to infer lost/reordered
packets
– Retransmits lost packets

– Stalls receiver application until retransmission arrives; data delivered in
order
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TCP Congestion Control

• Receipt of acknowledgements also drives TCP congestion control

• TCP is a sliding window protocol
– A congestion window indicating the number of packets allowed in flight

• Acknowledgements of new data increase the congestion window
– Slow start

– Congestion avoidance

• Packet loss reduces the congestion window
– Triple duplicate ACK

– Timeout

– A receive window to indicate how much data the receiver can handle
• Flow control

– Sender have max(congestion window, receive window) packets outstanding
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Evolution of the Congestion Window

• Additive increase/multiplicative decrease in the window
– Linear probe of available capacity until momentary overload

– Multiplicative back-off to safe sending rate

• Ensures capacity is used, avoids network overload

• Approximately equal share of bottleneck capacity between flows

Congestion
avoidance

Slow start

Timeout

Triple duplicate ACK
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Slow Start

• The slow start algorithm is used to
rapidly probe network capacity

• Connections start with initial window
of  min(4M, max(2*M, 4380)) octets
– M is maximum segment size

– 3 packets on Ethernet where M=1460

– Old implementations start at 1 packet

• Congestion window increases by one
packet when an ACK is received that
acknowledges new data
– cwndnew = cwndold + 1

– Slow start, exponential growth

• Stops when a loss event occurs
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Congestion Avoidance

• Once in a stable regime, congestion
avoidance takes over

• Additive increase in congestion window

• For each non-duplicate ACK received:

• Equivalent to a linear increase in the
congestion window by one segment per
round-trip time! 
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Reaction to Loss: Triple Duplicate ACK

• A single packet loss causes a triple
duplicate ACK to be generated
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10 11 11 11 11

Triple duplicate

Sender waits for triple duplicate, to be
robust to single packet reordering

• On receipt of triple duplicate, reduce to
half previous sending rate, continue in
congestion avoidance

Multiplicative decrease
to half previous rate

[Slightly simplified to omit “fast recovery” - See RFC2581]
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Reaction to Loss: Timeout

• Timeouts occurs when ACKs stop being
received

• Two reasons:
– Failure on the forward path; data doesn’t

reach receiver, so it stops generating
ACKs

– Failure on the reverse path; receiver is
generating ACKs but the don’t reach the
sender

• On timeout, sender reduces congestion
window to 1 segment, enters slow start
until half previous rate then congestion
avoidance
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Evolution of the Congestion Window

• Ideally a flow slow starts to probe the capacity, then follows a
saw tooth pattern of congestion avoidance and triple duplicate
ACKs with back-off

• Steady state is to oscillate around the bottleneck link rate
– Reductions in rate allow router queues to empty; receiver sees constant rate

– Window ≈ bandwidth * delay of path
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Other Features

• Selective acknowledgements (SACK) allow a receiver to indicate
which packets arrived following a loss
– Lets the sender only retransmit data that was actually lost

– Faster recovery from loss

• Window scaling
– TCP packet header has a 16 bit field to advertise the receive window, but

65536 bytes too small for modern networks

– A window scale option conveys an integer multiple scale factor, to allow
larger windows
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TCP/IP Performance

• The slow start algorithm is designed to rapidly find the bottleneck
link capacity

• The congestion avoidance algorithm will continually probe for
changes in capacity during a connection

• Supposed to allow TCP to make effective use of network capacity

• But, many people complain that TCP/IP is slow…

• Why is this is case?
– Poorly tuned hosts

– AIMD behaviour, aggressive back-off, slow linear increase; poor
performance on large fat pipes
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TCP Performance Tuning

• Most operating systems choose TCP parameter defaults that are
not optimized for high-performance, tuning often necessary:
– Use large initial congestion window, window scaling, SACK, etc.

• Gigabit wide area needs a window of ~10Mbytes

– Tune system interrupt handling to reduce per-packet overhead
• Interrupt coalescing, delayed interrupts

• Polled rather than interrupt driven network devices (FreeBSD)

– Use largest MTU possible, to reduce per-packet overhead

• Most operating systems have poor defaults
– Optimized for many connections, not high performance

– Need to tune system parameters!
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Modelling TCP Throughput

• But, even when correctly tuned, performance can be poor…

• Need to use a mathematical model to understand the factors that
limit TCP protocol performance
– Model the fundamental behaviour of the protocol, rather than specific

implementation issues

– Much research conducted in this area, driven by the needs of the Grid
computing community
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Modelling TCP Throughput

• Current best model due to Padhye et al. [1]:
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All parameters 
are measurable

T = average throughput s = packet size
R = round trip time p = loss event rate
Trto = retransmission timeout (often approximated as Trto = 4R)

• Makes certain assumptions so the analysis is tractable:
– Saturated steady state TCP Reno sender

– Packet loss correlated within sending window, uncorrelated long term

– Packet reordering rare

• Models average behaviour on an idealised network; reasonable
but not perfect fit with average behaviour of real systems
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Modelling TCP Throughput

• When p is small, 3p(1+32p2) tends to zero and response to triple-
duplicate ACKs dominate; as p increases timeouts predominate

• Assuming low loss rates, can approximate:

Models timeout
Models triple
duplicate ack
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TCP and Large Fat Pipes

• If we invert the previous equation, can derive the loss event rate
needed to sustain a particular throughput:
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• What if we want to send 10Gbps transatlantic?
– s = 1500 octets, T = 10Gbps, R = 100ms ⇒ p = 2*10-10

– This corresponds to an error rate of about 1-in-1014 bits, which is more than
the inherent bit error rate of optical fibre
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TCP and Large Fat Pipes

• Worse: the AIMD behaviour of TCP means it recovers slowly
from loss
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Loss
28 minutes

1 Gbps

• Not an issue at low speeds, but big problem at high rates…

500 Mbps
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TCP and Large Fat Pipes

• Conclusion: TCP requires unrealistically low loss event rates to
sustain high performance

• This is a fundamental limitation of TCP, not something that can
be solved through host performance tuning
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How to Improve Transfer Performance

• Parallel streams

• Modify the TCP congestion response
– High Speed TCP

– Scalable TCP

– H-TCP

– FAST TCP

• Replace TCP
– XCP

• Modify the IP layer to avoid congestion
– Integrated and Differentiated Services

– MPLS and Optical Switching

Application

Presentation

Session

Transport

Network

Data-link

Physical

• Can approach the problem at different layers in
the protocol stack

• Trade-off ease of implementation and deployment
versus potential for performance improvement
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Parallel Connections

• Simple application level solution: if a single stream is too slow,
open multiple connections
– Web browsers using HTTP

– GridFTP in Globus toolkit

• Simple to deploy; no changes to the operating system or network

• Small numbers of streams improve performance

…but larger numbers interfere with each other
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Parallel Connections

• Implies n flows achieve n times the capacity of a single flow

• But more flows will increase px, so full benefit not gained…
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• Can be shown that throughput of n parallel flows is:

From [2]
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Modify the TCP Congestion Response

• For standard TCP:
– On ACK: cwndnew = cwndold + α / cwndold

– On drop: cwndnew = cwndold − β * cwndold

– Where α = 1 and β = 0.5

• Can make TCP more aggressive by increasing α and β
– Naïvely doing so makes it unfair to standard TCP

– Adjust these parameters as a function of the window size
• Gradually make response more aggressive as the window increases

• Same response at the rates standard TCP achieves, more aggressive at higher
rates (to allow it to achieve higher rates)

• Difficult to achieve stability, fairness

– Many proposals: HighSpeed TCP [3], H-TCP, Scalable TCP, etc.

– Active research area… no standard solution



Replace TCP

• If TCP works so poorly, can we replace it?
– Yes, but not easily

– Need to update all hosts, NAT boxes and firewalls

• Three protocols under serious development:
– SCTP Telephony signaling; TCP-like congestion control with fail-over

– DCCP Streaming media; TCP-friendly congestion control

– XCP Alternative to TCP that needs router support; non-TCP
congestion control, higher performance
(Will be discussed in the tutorial this week - see the paper [4])
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Modify the IP Layer to Avoid Congestion

• Alternative to making TCP faster, we can isolate our traffic to
avoid congestion on the network
– Quality-of-service (QoS)

• Differentiated services

• Integrated services/RSVP

– Traffic engineering (MPLS)

• Or we can add explicit congestion notification so routers can
inform connections of loss without dropping packets
– A bit in the IP header to signal “congestion occurring, slow down”

• Hard to deploy:
– Need to update routers; possible since ISPs apply software updates

– Need to update NAT and firewalls (including home NAT boxes…)
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Deployment and Standardisation Issues

• IETF has active work to standardize improvements to TCP:
– http://www.ietf.org/html.charters/tcpm-charter.html

– http://www.ietf.org/html.charters/tsvwg-charter.html

• Many experiments using Linux
– Widespread deployment difficult unless you can persuade Microsoft…

• Much work on QoS - mature and developing standards

• Very limited deployment
– Economic issues: no scalable solutions to billing, accounting, etc.
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Lecture Summary

• You should know…
– How TCP congestion control works

– The limitations of TCP/IP for high performance networking

– Outlines approaches to improving performance
• Parallel connections

• Modifying TCP

• New transport protocols

• Modifying IP

• The tutorial on Friday:
– Discussion of HighSpeed TCP and XCP (see papers…)
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