Workflow Management

John Watt

http://csperkins.org/teaching/2004-2005/gc5

Overview

- Introduction to Workflows
- Construction and Enactment
- e-Science Workflows
- Critical Issues
- Geodise Project
- Taverna Project
- Summary

Workflow

• Definition:

- "The set of relationships between all the activities in a project, from start to finish. Activities are related by different types of trigger relation. Activities may be triggered by external events or by other activities."
 - "The Free Online Dictionary of Computing (FOLDOC) "

opyright © 2004 University of Glasgow

Workflow

• Definition:

- "The automation of a business process, in whole or in part, during which information or tasks are passed from one participant to another for action, according to a set of procedural rules."
 - Workflow Management Coalition (WfMC)
- Workflow is an established methodology for business process management.

pyright © 2004 University of Glasgow

e-Science Workflow

- Can adapt this definition for e-Science:
 - 'business process' ⇒ 'scientific process'
 - 'participants' ⇒ 'compute or data oriented resources'
 - 'information or tasks' ⇒ 'data flow or control flow'
- Participants may be geographically distributed.
- Data and control flows may span organisational boundaries.
 - Workflow well suited for describing e-Science applications and activities.

e-Science Workflow

- Workflows allow the e-Scientist to describe and enact their experimental processes in a structured, repeatable and verifiable way.
 - From MyGrid project website
 - Development of a simple workflow language and toolset in collaboration with the European Bioinformatics Institute and the Human Genome Mapping Project
- e-Science Workflow is a very new field

opyright © 2004 University of Glasgov

Workflow and Grids

- Workflow is a critical part of the emerging Grid
 - Captures the linkage of constituent services together in a hierarchical fashion to build larger composite services
 - Encompasses
 - "Programming the Grid"
 - "Service Orchestration"
 - "Service or Process Coordination"
 - "Service Conversation"
 - "Web or Grid Scripting"
 - "Application Integration"
 - And many many more...!! (software bus)

Workflow Projects

- Manual composition
 - Triana, BPWS4J, Self-serve
 - Not scalable, user requires low-level knowledge
- Semi-automated
 - Cardoso, Sheth, GeoDISE (myGrid)
 - User still needs to select services required
- Automated (uses AI technology Semantic Grid)
 - SHOP2, Pegasus-ISI, IRS-II
 - Most systems make simplistic assumptions
 - Difficult to reuse (static environment)

Important Aspects

- Representation and language
- User Environments or Workflow IDE
- Translation or compilation
- Execution and runtime support

Grid Workflow Approaches

• Inherent model

- Workflow is defined inside the software components
- e.g. MPI, CORBA, Cactus

External model

- Workflow is defined on top of software components
- Complete view of workflow
- e.g. scripts or graphs

Workflow Representations

- Graph based
 - Nodes of graph represent services
 - Directed edges represent data flow or control flow
- XML based
 - Conforms to the schema of some workflow definition language
- Workflow is inherently hierarchical
 - Workflow of more than one node may be represented by one workflow within other workflows

Workflow Implementations

- Scripts
 - GridAnt, JPython (XCAT)
- Combined scripts + graphs
 - WSFL, XLANG, BPEL4WS, UNICORE, GSFL
- Graphs
 - DAG: Condor DAGman, Symphony,
 - Petri net: GJobDL

Possible Standards

- Represent workflow by some XML-based workflow definition language
 - Business Process Execution Language for Web Services (BPEL4WS) –
 IBM and Microsoft
 - XML Process Definition Language (XPDL) WfMC
 - Open question as to whether we can use e-Business workflow description languages for e-Science (must support programming abstractions such as conditional and loop constructs)
- e-Science
 - Service Workflow Language (SWFL) Cardiff
 - Grid Service Flow Language (GFSL) Argonne

- Use graphical representation to construct XML workflow description document
 - Visual service composition environment (VSCE)
 - Links services comprising a workflow
 - Provides mechanism for service discovery to populate a virtual service repository
 - Interfaces repository services by visual connection of data and control links on a 'canvas'
 - 'plug-and-play' capability
 - Requires that only services with compatible interfaces may be connected

- Service interfaces must be syntactically AND semantically compatible a challenge!
 - Syntactic: requires data types of data items flowing into a target service to be the same as the data types of the data output by the source service
 - Common data types defined in some XML namespace that everyone should use
 - Semantic: requires data items to have similar meaning when they may have different names
 - Need a mechanism which determines if complex data types defined in different XML namespaces have the same meaning
 - e.g. compatible units for non-dimensionless quantities

- General problem of determining and comparing the behaviours of interacting services
 - Use ontologies and agent-based mediation to assess semantic compatibility
- VCSE accesses service descriptions given in WSDL (for example) to determine the syntax of a service interface
 - Additional metadata is needed in the service description to describe the service semantics and provenance

- More complications!
- Services in a workflow may not be bound to specific service implementations at runtime
 - Services may only be bound dynamically at runtime
 - May not be compatible
 - Happens when workflows constructed on semantics, not on interfaces
- We could 'compile and link' workflows in the VSCE to check the interacting services are compatible and discoverable
 - Doesn't guarantee future service availability

Workflow Enactment

- Constructed workflow submitted to a workflow engine for execution
 - Converts XML document into an executable form
 - Discovers and schedules services
 - Central tasks of any service-oriented architecture for Grid Computing
 - Should be able to exploit parallelism
 - Grid Runtime Environment

Current state of play

- Require a scientific workflow engine
 - Compatible with different runtime environments
 - Enterprise JavaBeans
 - Scientific JavaBeans
 - Need to integrate ontology support
- Require a scientific workflow language
 - Identify differences between e-Business and e-Science needs can we use BPEL4WS?
- Need parallel execution and dynamic discovery of services

User Requirements

- Reflect the modelling paradigm of the scientist
 - Varies across disciplines
 - Maintain appropriate levels of abstraction
 - "Work in MY problem solving environment, so I don't have to change the way I work"
- Different users, different environments
 - Creators, users, auditors, validators...
- Simple to use, with intuitive creation, deployment, execution and debugging environments

e-Science Workflow Lifecycles

- Incrementally exploratory prototypes
 - Got the data, publish ASAP!!
- Large scale production
 - Got the idea, get the data for many experiments, communities, collaborations
- Migration
 - Capture of prototype for non-interactive reply at a later date
- Different parts of lifecycle
 - Interaction of many different users, environments...

User Interactions

- Creation and Discovery
 - Drag 'n drop, by example, plagiarism
- Collaborative multi-user interaction in creation
 - Reuse workflows with different data
 - Compose workflows from different disciplines
- Single user interaction with workflow execution
 - Choice between paths of execution in certain states
 - Parameter modification mid-run
- Collaborative multi-user interaction during execution???

Scientific Workflow Characteristics

- Very large amounts of data
 - Files, streams, database queries
 - GridFTP, http, ftp, sockets
 - Sometimes the computation needs to be moved to the data
- Data model and types
 - Metadata and provenance
- Driven by
 - Scientific questions, outcomes, bravado
 - More creators than users in science?

Critical Issues

- Managing complex workflows
 - Parameter and constraint management
 - Workflow Tools
- Grid Job IDs
- Security
- Engineering Workflows
 - Geodise

Managing Complex Workflows

- Parameter and constraint Management Problem
 - When workflow nodes contain many attributes or attributes that are related to attributes in other nodes
 - HEP Use Case: Consistent calibration sets, fudge factors, simulation input parameters
 - When workflow nodes' parameters and constraints vary with execution or logical context
 - HEP Use Case: Physics groups, parameters coming from gurus, different kinds of infrastructure across the VO
 - Dynamism in workflow due to execution environment can be modelled as dynamism in the constraints from site to site

Managing Complex Workflows

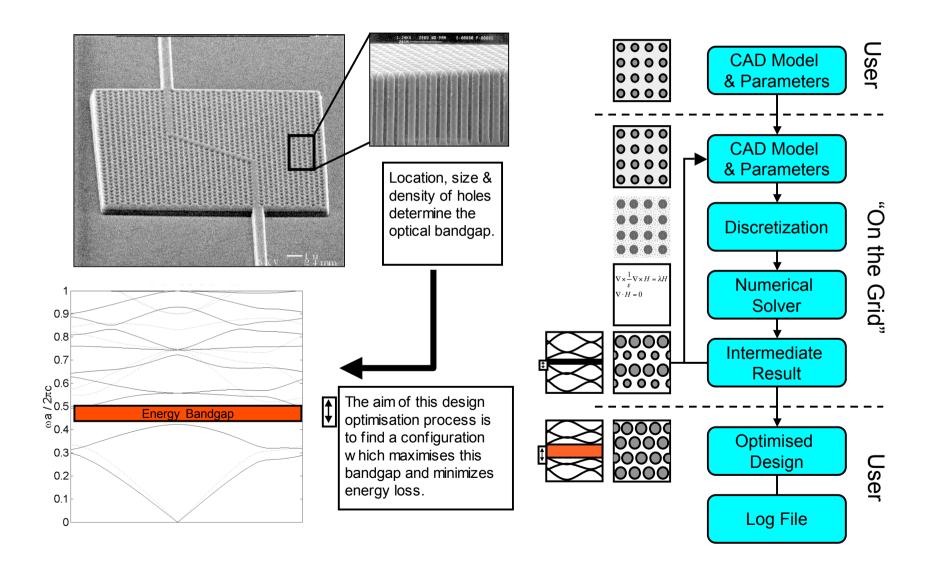
- Workflow building tools
 - Should address Parameter and Constraint Management Problem
 - Factor workflows away from constraint and parameter specification
 - Constraint satisfaction implies another partial order in addition to control flow and data flow
 - Provide services at runtime to handle dynamism by resolving late constraints
 - e.g. The RunJob project (projects.fnal.gov/runjob)

Workflow Job IDs

- Grid jobs (or workflows) have many different stages, e.g. Input data staging, Authentication, Scheduling, Running and Returning results
 - Each of these stages uses one or more Grid services, which may be servicing other Grid workflows, or parallel branches of this workflow
 - Time correlation of logs may be ambiguous
 - To track the job, we need two things to be a standard part of every Grid Service
 - 1. A "Grid Job ID" metadata element
 - 2. Grid Service lifecycle monitoring: log an event at START of service, END of service and include Grid Job ID in these events

Security

- Requirements for Workflow systems often include security
 - Data access controls, constraints, provenance
- Issues:
 - Need to distinguish between functionality & security guarantees
 - Workflow systems are often interposed between users, data and services without considering the trust responsibilities that this design imposes on planning and enactment systems
 - Workflows are process or data centric
 - They do not always naturally map to user-centric system security policies


Security

- Issues (cont.)
 - Planning and enactment are complex/rich processes
 - It is poor security design to trust a complex mechanism
- Need a systems design approach that separates enactment and protection by refactoring the protection requirement away from planning and enactment, and into the distributed system. e.g
 - Pass data by reference
 - Users access data via normal system access control, rather than via workflow
 - Protect services at the point they are invoked
 - Rather than trust the correctness of the planning & enactment process

Geodise Project: Engineering Workflows

- Scenario: design optimisation
 - Model device, discretize, solve, postprocess, optimise
- Scripting approach
 - Flexibility & High Level functionality
 - Quick application development
 - Extend user's existing PSE e.g. Matlab, Python
 - Is execution/enactment engine too
- Favourites:
 - Create, retrieve, cut 'n' shut (re-use)
 - Configure, execute, monitor (bring grid to user)
 - Share, steer, dynamically modify (semantic support)

Geodise - Photonic Crystal Optimisation

Sopyright © 2004 University of Glasgo

Geodise: Grid enabled Matlab scripting

Motivations

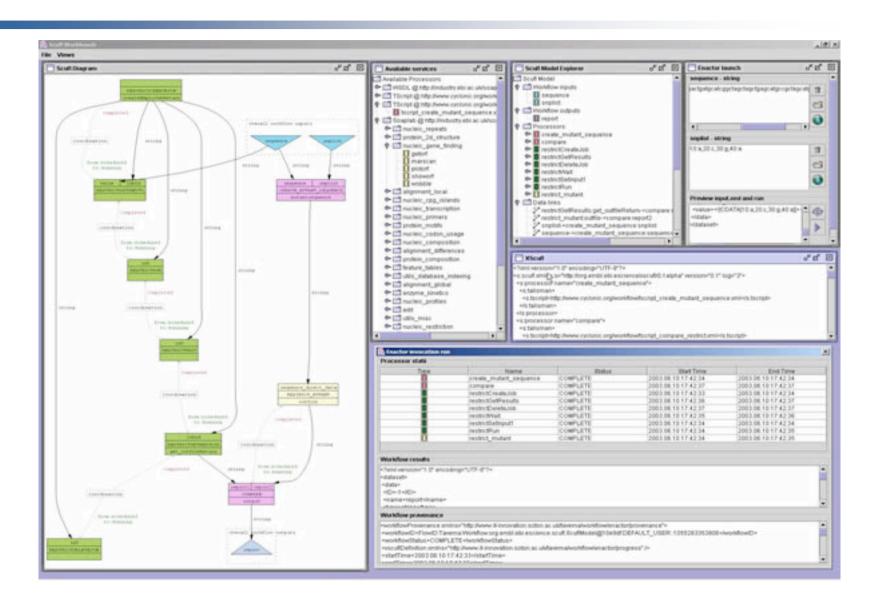
- Flexible, transparent access to computational res.
 - Easy to use for engineers (and in widespread use)
- Matlab chosen as hosting environment
 - Extends user's existing PSE, high level func., quick development
- Computational resources exposed in the form of Matlab functions
 - Job submission to Globus server using Java CoG
 - Job submission to Condor pool via Web Services interface
- Integration of CAD, Mesh generation via the use of intermediate data format, often package-neutral

pyright © 2004 University of Glasgow

e-Science Research Projects

- myGrid (SeSC)
 - Workflow Enactment Engine
- WEGS (NEReSC)
 - Workflow Enactment Grid Service
- SWFL (WeSC)
 - Service Workflow Language
- IT Innovation's Workflow Enactor

The Taverna Project


- Aims to provide a language and software tools to facilitate easy use of workflow and distributed compute technology within the e-Science community.
 - Component of the myGrid project
 - Available freely under GNU Lesser General Public License
 - Project aims to provide a workflow-based approach to the specification and execution of ad-hoc in-silico experiments using bioinformatics resources.

Taverna

- Consists of a workflow workbench to graphically build, edit and browse workflows.
 - Includes easy import of external web service and workflow definitions.
 - Can submit workflows directly to the workflow enactor (freefluo) for execution
- Freefluo coordinates execution of parallel and sequential activities in the workflow
 - Supports data iteration and nested workflows
 - Can invoke arbitrary web services and specific bioinformatics services (Talisman, Soaplab)

Sopyright © 2004 University of Glasgow

Taverna workbench

Summary

- Workflows are good for describing e-Science activities
 - Geographically distributed, cross-organisational
- Workflows link discrete Grid Services into larger composite services
 - Semantic/syntactic compatibility, parameter constraint
- Workflows ideally constructed in a VSCE
 - Workflow workbench, drag 'n' drop, dynamic creation
 - Establish a standard language for workflows
 - All open questions in a new field