Resource Discovery and Information Services

John Watt

http://csperkins.org/teaching/2004-2005/gc5/

Overview

- Introduction
- Requirements
- Architecture
- MDS2
 - GRISs and GIISs
- MDS3
 - serviceData
- Index Service
- Summary

Information Services

- System information is critical to the operation of the grid and construction of applications
 - What resources are available?
 - Resource discovery
 - What is the "state" of the grid?
 - Resource selection
 - How to optimize resource use
 - Application configuration and adaptation
- We need a general information infrastructure to answer these questions

Information Services

- Any grid software infrastructure should provide fundamental mechanisms for
 - Discovery
 - Monitoring
 - Planning
 - Adapting application behaviour
- Design to support the initial discovery and ongoing monitoring of the existence and characteristics of resources, services, computations, and other entities.

pyright © 2004 University of Glasgow

• Distribution

- Information sources are necessarily distributed and individual sources are subject to error/failure
- Any information delivered will be old
- Information producers should use timestamps and time-to-live metadata
- Information services should transport information as rapidly and efficiently as possible

- Failure management
 - Information services should behave robustly in the face of failure of any component
 - Failure should not prevent users from gaining information, even if it is partial or inconsistent
- Information services should be as distributed as possible.
- Information services components should be built under the assumption that they will fail!!

Sopyright © 2004 University of Glasgov

- Diversity
 - A new virtual organization may involve many entities and have unique requirements for discovery and monitoring
- Define the standard discovery and enquiry mechanisms that must be supported by any grid entity

- Security
 - Information is often provided with restrictions
- Must have robust authentication and authorisation mechanisms that information owners will trust
- Providers may wish to assert policy over which virtual organisations they are prepared to join

pyright © 2004 University of Glasgow

Architecture

- There are two fundamental entities in information services
- Information Providers
 - Common VO-neutral infrastructure
 - Providing access to detailed dynamic information about Grid entities
- Specialised aggregate directory services
 - Specialised VO-specific views of federated resources, services etc.

pyright © 2004 University of Glasgow

Security Issues

- The information providers and aggregate directory have the same access policy (providers trust the directory)
 - Information providers limit the information that is available to an aggregate directory
 - Information provider makes no other information known, other than its existence
 - Information provider places no restrictions on the information given out

LDAP

- Lightweight Directory Access Protocol
 - Version of X.500 DAP protocol
 - Supports distributed storage/access (referrals)
 - Supports authentication and authorisation
- Defines
 - Network protocol for accessing directory contents
 - Information model defining form of information
 - Namespace defining how information is referenced and organised
 - e.g. Domain Name Service (DNS)

LDAP

- Information model and namespace are based on entries
- An entry is used to store attributes
- An attribute is an associated type and can have one or more values
- Each entry in a namespace has a distinguished name which allows it to be identified easily

opyright © 2004 University of Glasgov

Implementations

- Globus toolkit contains an implementation of a grid information service
 - Meta Directory Service (MDS)
 - A basis for configuration and adaptation in heterogeneous, dynamic environments
 - Uniform, flexible access to information
 - Scalable, efficient access to dynamic data
 - Access to multiple information sources
 - Decentralised maintenance

MDS Protocols

- Grid Information Protocol (GRIP)
 - Users, aggregate directories and applications use GRIP to obtain information from an information provider about the entities the provider possesses
 - Discovery and Enquiry are supported
 - Implemented using OpenLDAP

MDS Protocols

- Grid Registration Protocol
 - Used by information provider to notify the aggregate directory of its availability for indexing
 - Or used by aggregate directory to invite an information provider to join a VO
 - GRRP is a "soft-state" protocol
 - Information can be discarded unless refreshed by a stream of subsequent notifications
 - Makes it resistant to failure

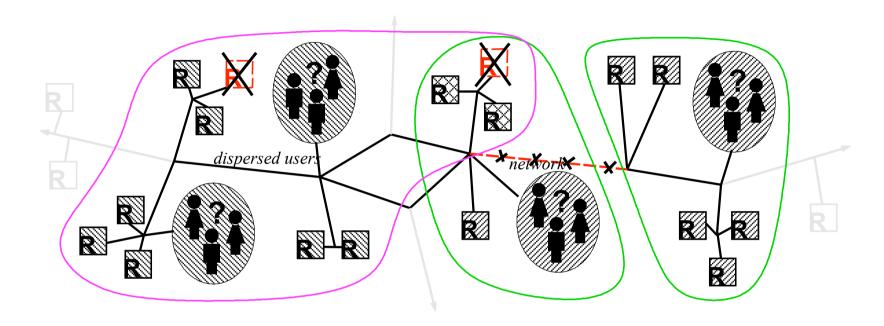
GRIS

- GRIS stands for "Grid Resource Information Service"
 - Implemented as a server which runs on each resource
 - Given the resource DNS, one can find the GRIS server (implemented as an OpenLDAP server backend)
 - Provides resource specific information by parsing each GRIP request
 - Much of this information may be dynamic
 - Load, process information, storage info etc
 - GRIS gathers this info "on-demand"

opyright © 2004 University of Glasgov

GRIS

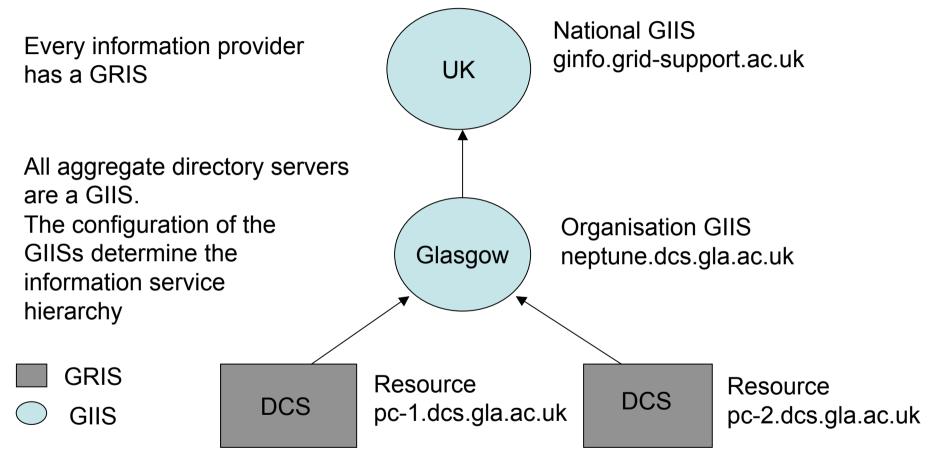
- "White Pages" lookup of resource information
 - How much memory does the machine have?
- "Yellow Pages" lookup of resource options
 - Which queues on machines allow large jobs?


Sopyright © 2004 University of Glasgow

GIIS

- GIIS stands for Grid Index Information Service
 - GIIS describes a class of servers
 - Gathers information from multiple GRIS servers via GRRP messages
 - Each GIIS is optimised for particular queries
 - Relative to web search engines
 - GIIS provides a "caching" service much like a web search engine.
 Resources register with GIIS and GIIS pulls information from them when requested by a client and the cache has expired.
 - GIIS provides the collective-level indexing/searching function.

opyright © 2004 University of Glasgov


MDS2 Architecture

- GRIS resource
- GIIS multi-resource index
- LDAP protocols (OpenLDAP)
- Pull only

Copyright © 2004 University of Glasgow

GRIS/GIIS Hierarchy

Copyright © 2004 University of Glasg

MDS3

- MDS3 is the Information Service for the Globus Toolkit 3
- Main interesting areas of MDS3
 - serviceData
 - Query mechanisms
 - XPath query support
 - Host status info
 - Index Service
 - Hosting Environment components

opyright © 2004 University of Glasgov

MDS3

- MDS3 is built on the Open Grid Services Infrastructure
- Recap:
 - Grid services add extra features to Web Service standards (WSDL, SOAP)
 - But still can use standard web service components to build grid services (e.g. Using Apache Axis with GT3)
 - Most important extra feature for MDS is "serviceData"

opyright © 2004 University of Glasgow

serviceData

- serviceData is XML data published by every grid service that provides some representation of its internal state
 - Each piece of serviceData is called a "serviceData Element" (SDE)
 - (XML of arb. complexity)
 - A grid service has a logical entity called the "serviceData set" which is a collection of all the serviceData Elements
 - e.g. State of a host (or cluster) exposed as a single SDE (by GRAM), or job status
 - Similar to MDS2 GRIS, but in each service rather than once per resource

Getting the serviceData

- Two ways to retrieve service data
 - pull or push.
- Pull (send 1 query and receive 1 response only)
 - findServiceData operation
 - OGSI wants it extensible and support "queryByName"
 - GT3 has defined "queryByXPath" coming up

Getting the serviceData

- Push (send a subscription expression and receive notifications [callbacks] at appro. times)
 - subscribeByServiceDataNames
 - Extensible <u>BUT optional</u> in OGSI
- A client can discover which query and subscription mechanism is supported by a service by additional query listed in well-known SDEs
 - findServiceDataExtensibility
 - subscribeExtensibility

serviceDataNames

- The basic query and subscription types for OGSI
 - queryByServiceDataNames
 - guaranteed to be supported by ANY Grid Service
 - subscribeByServiceDataNames
- Parameter returned is the list of SDE names
 - Plus some additional info for subscriptions
 - Min/max frequency, sink, ttl
 - Entire SDE is returned, so if SDE is large, the return/notification is large also
 - e.g. if we have a cluster SDE representing status of 300 nodes, every notification must include the entire state of all 300 nodes
 - RFT has SDE of all outstanding jobs, so queryByName would give us the state of ALL jobs each time

XPath queries

- So findServiceData is good for small SDEs, bad for large SDEs.
- How can we get smaller results from findServiceData?
 - Use a different query type
 - No other type is described in the OGSI specification
 - Globus have built their own query type using XPath

pyright © 2004 University of Glasgow

XPath queries

- XPath is a W3C XML query language
 - Based on XALAN XPath library
 - Any service built on the GT3 OGSA core has support for this functionality
- Globus have defined a query type
 - Input parameters are an SDE and an XPath query
 - Output is the result of evaluating the XPath query against the SDE set
 - So you get a list of 0 or more elements that matched the query

XPath queries

- Query
 - //Host[@Name="lab.nesc.ac.uk"]/ProcessorLoad
- Result
 - <ProcessorLoad Last1Min="00" Last5Min="00"
 Last15min="00"/>
- An example MDS3 query
 - Returns the processor load element of lab.nesc when applied to a cluster status SDE
 - Works by selecting ALL the host elements
 - Then selects the subset with name "lab.nesc.ac.uk" (could be many)
 - Then from each of these, selects the Processor Load element (could be many again)

Future work on queries

- Other XML query languages?
 - XQuery, XSLT (both using XPath as a base)
 - May allow more interesting XML processing on the server side
 - But don't want too many in case the wrong one is chosen and needs to be scrapped when it gets widely used (sound familiar??!)
- XPath subscription?
 - "when query result changes, send me an update"
 - Could be quite simple to implement...
 - But only if we are interested ONLY in a subset of the SDE data

Future work on queries

- Partial SDE notification?
 - Currently, if you want to subscribe to a large SDE, your only choice is to get the whole SDE back at one time.
 - XPath subscription would help if we are ONLY interested in a subset of the data, not the whole SDE
 - Partial notification could generate XML that describes the difference between the old and new values of the SDE
 - We could generate difference XMLs so some notification streams could be missed, but we still get reasonable results
 - Sounds difficult? It's VERY difficult for arbitrary XML data

Host Status

- Also want to retrieve information about the status of the host (not just the Grid Service)
 - Filesystem info, memory usage, CPU load, network adapter info, etc...
 - This is the info that comes out of MDS2 GRIS by default
 - XML schema based on GLUE
 - Better for representing clusters
 - Single host MDS2 providers ported to XML output
 - Other people working on implementation with Ganglia

Host status example

```
<Cluster Name="pygar.isi.edu" UniqueID="pygar.isi.edu">
  <SubCluster Name="pygar.isi.edu" UniqueID="pygar.isi.edu">
    <Host Name="pygar.isi.edu" UniqueID="pygar.isi.edu">
<Processor
 Vendor=" GenuineIntel" Model=" Intel(R) XEON(TM) CPU 2" Version="15.2.4"
  ClockSpeed="2193" CacheL2="512"/>
<MainMemory VirtualSize="2047" RAMSize="1004" RAMAvailable="119"</pre>
   VirtualAvailable="1716" />
<OperatingSystem Name="Linux" Release="2.4.7-10" Version="#1 Thu Sep 6</pre>
   17:27:27 EDT 2001" />
<FileSystem Name="/"</pre>
                        Size="23510" AvailableSpace="650" Root="/"
   Type="unavailable" ReadOnly="false" />
<NetworkAdapter Name="eth0" IPAddress="128.9.72.46" InboundIP="True"</pre>
   OutboundIP="True" MTU="1500"/>
<ProcessorLoad Last1Min="00" Last5Min="00" Last15Min="00" />
   </Host>
 </SubCluster>
</Cluster>
```

Copyright © 2004 University of Gla

Information Service Development

- Useful hosting environment components
 - OGSI Core
 - Provides basic findServiceData call and subscription handling
 - Can store service data either in memory or in Xindice
 - Xindice is XML database that gives PERSISTENT service data (i.e. you can reboot services and the data will still be there)
 - Switchable per service at runtime (decide what works best for your application)
 - Aggregator mechanism
 - Acts as notification sink, and receives notifications from other services.
 Republishes under one name so query against this rather than a load of separate ones
 - Provider component
 - Lets you plug in Java or UNIX script service data providers

The GT3 Index Service

- Take all these components, stick them together and configure
 - GT3 IndexService
 - End up like MDS2 GIIS
 - Can retrieve data from various sources
 - Publishes it through ONE service
 - Query the index in the same way as any other service data (e.g. resources)
 - i.e. using findServiceData or subscription
 - Like MDS2 where query a GIIS the same way as a GRIS
 - Arbitrary XML data no schema

Summary

- The GT3 Index Service is an implementation which provides
 - An interface for connecting service instances to external Service Data Providers
 - Can generate dynamic service data using external programs (either using GT3 or a custom provider)
 - A generic framework for aggregation of service data
 - Can index services from different service providers and support their subscription, notification, polling...
 - A registry of Grid Services
 - Soft-state registration, can support queries on that service