
Resource Discovery and
Information Services

John Watt
http://csperkins.org/teaching/2004-2005/gc5/

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Overview

• Introduction

• Requirements

• Architecture

• MDS2
– GRISs and GIISs

• MDS3
– serviceData

• Index Service

• Summary

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Information Services

• System information is critical to the operation of the grid and
construction of applications
– What resources are available?

• Resource discovery

– What is the “state” of the grid?
• Resource selection

– How to optimize resource use
• Application configuration and adaptation

• We need a general information infrastructure to answer these
questions

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Information Services

• Any grid software infrastructure should provide fundamental
mechanisms for
– Discovery

– Monitoring

– Planning

– Adapting application behaviour

• Design to support the initial discovery and ongoing monitoring of
the existence and characteristics of resources, services,
computations, and other entities.

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Requirements

• Distribution
– Information sources are necessarily distributed and individual sources are

subject to error/failure

– Any information delivered will be old

• Information producers should use timestamps and time-to-live
metadata

• Information services should transport information as rapidly and
efficiently as possible

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Requirements

• Failure management
– Information services should behave robustly in the face of failure of any

component

– Failure should not prevent users from gaining information, even if it is
partial or inconsistent

• Information services should be as distributed as possible.

• Information services components should be built under the
assumption that they will fail!!

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Requirements

• Diversity
– A new virtual organization may involve many entities and have unique

requirements for discovery and monitoring

• Define the standard discovery and enquiry mechanisms that must
be supported by any grid entity

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Requirements

• Security
– Information is often provided with restrictions

• Must have robust authentication and authorisation mechanisms
that information owners will trust

• Providers may wish to assert policy over which virtual
organisations they are prepared to join

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Architecture

• There are two fundamental entities in information services

• Information Providers
– Common VO-neutral infrastructure

– Providing access to detailed dynamic information about Grid entities

• Specialised aggregate directory services
– Specialised VO-specific views of federated resources, services etc.

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Security Issues

• The information providers and aggregate directory have the same
access policy (providers trust the directory)
– Information providers limit the information that is available to an aggregate

directory

– Information provider makes no other information known, other than its
existence

– Information provider places no restrictions on the information given out

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
LDAP

• Lightweight Directory Access Protocol
– Version of X.500 DAP protocol

– Supports distributed storage/access (referrals)

– Supports authentication and authorisation

• Defines
– Network protocol for accessing directory contents

– Information model defining form of information

– Namespace defining how information is referenced and organised
• e.g. Domain Name Service (DNS)

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
LDAP

• Information model and namespace are based on entries

• An entry is used to store attributes

• An attribute is an associated type and can have one or more values

• Each entry in a namespace has a distinguished name which allows
it to be identified easily

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Implementations

• Globus toolkit contains an implementation of a grid information
service
– Meta Directory Service (MDS)

• A basis for configuration and adaptation in heterogeneous, dynamic
environments

– Uniform, flexible access to information

– Scalable, efficient access to dynamic data

– Access to multiple information sources

– Decentralised maintenance

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
MDS Protocols

• Grid Information Protocol (GRIP)
– Users, aggregate directories and applications use GRIP to obtain

information from an information provider about the entities the provider
possesses

– Discovery and Enquiry are supported

– Implemented using OpenLDAP

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
MDS Protocols

• Grid Registration Protocol
– Used by information provider to notify the aggregate directory of its

availability for indexing

– Or used by aggregate directory to invite an information provider to join a
VO

– GRRP is a “soft-state” protocol
• Information can be discarded unless refreshed by a stream of subsequent

notifications

• Makes it resistant to failure

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
GRIS

• GRIS stands for “Grid Resource Information Service”
– Implemented as a server which runs on each resource

• Given the resource DNS, one can find the GRIS server (implemented as an
OpenLDAP server backend)

– Provides resource specific information by parsing each GRIP request
• Much of this information may be dynamic

– Load, process information, storage info etc

– GRIS gathers this info “on-demand”

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
GRIS

• “White Pages” lookup of resource information
– How much memory does the machine have?

• “Yellow Pages” lookup of resource options
– Which queues on machines allow large jobs?

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
GIIS

• GIIS stands for Grid Index Information Service
– GIIS describes a class of servers

• Gathers information from multiple GRIS servers via GRRP messages

• Each GIIS is optimised for particular queries

• Relative to web search engines

– GIIS provides a “caching” service much like a web search engine.
Resources register with GIIS and GIIS pulls information from them when
requested by a client and the cache has expired.

– GIIS provides the collective-level indexing/searching function.

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
MDS2 Architecture

• GRIS – resource
• GIIS – multi-resource index
• LDAP protocols (OpenLDAP)
• Pull only

R
R

R
R

R

R

?

?

R

R
R

R

R R

R

R R
?

?
R

R

R

R R

dispersed users network

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
GRIS/GIIS Hierarchy

UK

National GIIS
ginfo.grid-support.ac.uk

Glasgow
Organisation GIIS
neptune.dcs.gla.ac.uk

Resource
pc-2.dcs.gla.ac.uk

Resource
pc-1.dcs.gla.ac.uk DCSDCS

Every information provider
has a GRIS

All aggregate directory servers
are a GIIS.
The configuration of the
GIISs determine the
information service
hierarchy

GRIS

GIIS

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
MDS3

• MDS3 is the Information Service for the Globus Toolkit 3

• Main interesting areas of MDS3
– serviceData

– Query mechanisms

– XPath query support

– Host status info

– Index Service

– Hosting Environment components

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
MDS3

• MDS3 is built on the Open Grid Services Infrastructure

• Recap:
– Grid services add extra features to Web Service standards (WSDL, SOAP)

• But still can use standard web service components to build grid services (e.g.
Using Apache Axis with GT3)

– Most important extra feature for MDS is “serviceData”

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
serviceData

• serviceData is XML data published by every grid service that
provides some representation of its internal state
– Each piece of serviceData is called a “serviceData Element” (SDE)

• (XML of arb. complexity)

– A grid service has a logical entity called the “serviceData set” which is a
collection of all the serviceData Elements

• e.g. State of a host (or cluster) exposed as a single SDE (by GRAM), or job
status

• Similar to MDS2 GRIS, but in each service rather than once per resource

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Getting the serviceData

• Two ways to retrieve service data
– pull or push.

• Pull (send 1 query and receive 1 response only)
– findServiceData operation

• OGSI wants it extensible and support “queryByName”

• GT3 has defined “queryByXPath” – coming up

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Getting the serviceData

• Push (send a subscription expression and receive notifications
[callbacks] at appro. times)
– subscribeByServiceDataNames
– Extensible – BUT optional in OGSI

• A client can discover which query and subscription mechanism is
supported by a service by additional query listed in well-known
SDEs
– findServiceDataExtensibility
– subscribeExtensibility

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
serviceDataNames

• The basic query and subscription types for OGSI
– queryByServiceDataNames

• guaranteed to be supported by ANY Grid Service

– subscribeByServiceDataNames

• Parameter returned is the list of SDE names
– Plus some additional info for subscriptions

• Min/max frequency, sink, ttl

– Entire SDE is returned, so if SDE is large, the return/notification is large
also

• e.g. if we have a cluster SDE representing status of 300 nodes, every
notification must include the entire state of all 300 nodes

• RFT has SDE of all outstanding jobs, so queryByName would give us the state
of ALL jobs each time

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
XPath queries

• So findServiceData is good for small SDEs, bad for large SDEs.

• How can we get smaller results from findServiceData?
– Use a different query type

– No other type is described in the OGSI specification

– Globus have built their own query type using XPath

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
XPath queries

• XPath is a W3C XML query language
– Based on XALAN XPath library

– Any service built on the GT3 OGSA core has support for this functionality

• Globus have defined a query type
– Input parameters are an SDE and an XPath query

– Output is the result of evaluating the XPath query against the SDE set
• So you get a list of 0 or more elements that matched the query

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
XPath queries

• Query
– //Host[@Name=“lab.nesc.ac.uk”]/ProcessorLoad

• Result
– <ProcessorLoad Last1Min=“00” Last5Min=“00”

Last15min=“00”/>

• An example MDS3 query
– Returns the processor load element of lab.nesc when applied to a cluster

status SDE
• Works by selecting ALL the host elements
• Then selects the subset with name “lab.nesc.ac.uk” (could be many)
• Then from each of these, selects the Processor Load element (could be many

again)

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Future work on queries

• Other XML query languages?
– XQuery, XSLT (both using XPath as a base)

– May allow more interesting XML processing on the server side
• But don’t want too many in case the wrong one is chosen and needs to be

scrapped when it gets widely used (sound familiar??!)

• XPath subscription?
– “when query result changes, send me an update”

– Could be quite simple to implement…
• But only if we are interested ONLY in a subset of the SDE data

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Future work on queries

• Partial SDE notification?
– Currently, if you want to subscribe to a large SDE, your only choice is to

get the whole SDE back at one time.

– XPath subscription would help if we are ONLY interested in a subset of the
data, not the whole SDE

– Partial notification could generate XML that describes the difference
between the old and new values of the SDE

• We could generate difference XMLs so some notification streams could be
missed, but we still get reasonable results

– Sounds difficult? It’s VERY difficult for arbitrary XML data

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Host Status

• Also want to retrieve information about the status of the host (not
just the Grid Service)
– Filesystem info, memory usage, CPU load, network adapter info, etc…

– This is the info that comes out of MDS2 GRIS by default

– XML schema based on GLUE
• Better for representing clusters

– Single host MDS2 providers ported to XML output
• Other people working on implementation with Ganglia

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Host status example

<Cluster Name="pygar.isi.edu" UniqueID="pygar.isi.edu">
 <SubCluster Name="pygar.isi.edu" UniqueID="pygar.isi.edu">
 <Host Name="pygar.isi.edu" UniqueID="pygar.isi.edu">

<Processor
 Vendor=" GenuineIntel" Model=" Intel(R) XEON(TM) CPU 2" Version="15.2.4"
 ClockSpeed="2193" CacheL2="512"/>

<MainMemory VirtualSize="2047" RAMSize="1004" RAMAvailable="119"
VirtualAvailable="1716" />

<OperatingSystem Name="Linux" Release="2.4.7-10" Version="#1 Thu Sep 6
17:27:27 EDT 2001" />

<FileSystem Name="/“ Size="23510" AvailableSpace="650" Root="/"
Type="unavailable" ReadOnly="false“ />

<NetworkAdapter Name="eth0" IPAddress="128.9.72.46" InboundIP="True"
OutboundIP="True" MTU="1500"/>

<ProcessorLoad Last1Min="00" Last5Min="00" Last15Min="00“ />

 </Host>
 </SubCluster>
</Cluster>

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Information Service Development

• Useful hosting environment components
– OGSI Core

• Provides basic findServiceData call and subscription handling

– Can store service data either in memory or in Xindice
• Xindice is XML database that gives PERSISTENT service data (i.e. you can

reboot services and the data will still be there)
• Switchable per service at runtime (decide what works best for your application)

– Aggregator mechanism
• Acts as notification sink, and receives notifications from other services.

Republishes under one name so query against this rather than a load of separate
ones

– Provider component
• Lets you plug in Java or UNIX script service data providers

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
The GT3 Index Service

• Take all these components, stick them together and configure
– GT3 IndexService

– End up like MDS2 GIIS
• Can retrieve data from various sources

• Publishes it through ONE service

– Query the index in the same way as any other service data (e.g. resources)
• i.e. using findServiceData or subscription

• Like MDS2 where query a GIIS the same way as a GRIS

• Arbitrary XML data – no schema

Co
py

rig
ht

 ©
 2

00
4

U
ni

ve
rs

ity
 o

f
G

la
sg

ow
Summary

• The GT3 Index Service is an implementation which provides
– An interface for connecting service instances to external Service Data

Providers
• Can generate dynamic service data using external programs (either using GT3

or a custom provider)

– A generic framework for aggregation of service data
• Can index services from different service providers and support their

subscription, notification, polling…

– A registry of Grid Services
• Soft-state registration, can support queries on that service

