Implementations of the Grid Architecture

John Watt

http://csperkins.org/teaching/2004-2005/gc5/

Overview

- Message Passing Interface
- The Globus Toolkit
 - The Globus Alliance
 - Globus Toolkit 3
 - GT3 Architecture
 - Resource Management
- Other Grid Technologies
 - Microsoft .NET
 - Apple X-Grid

Status

- OGSA does not exist!
 - Specification is not fully defined
- However...
 - Some components are available and can be used to build Grid Services
- But before Globus...
 - A short recap of Parallel Computing, and how we can build a Grid-ready application

Copyright © 2004 University of Glasgov

Parallel Computing

- Researchers require computing resources to solve increasingly complex problems
- Demand for higher and higher processing speed, and more and more memory from normal desktop PCs.
 - Expensive!
- Distributed parallel applications provide a cheap, if complex solution
 - Requires new parallel applications, or the parallelisation of existing sequential programs.

Copyright © 2004 University of Glasgov

Parallel Programs

- Definition:
 - A parallel program runs on multiple CPUs simultaneously.
- If we can rewrite our program so that it runs on many processors at the same time, our computation time can be substantially reduced.
 - How can we do this....?

Hardware Configurations

- Massively parallel machines
 - Single Instruction Multiple Data
 - Very large array of CPUs with one instruction unit which issues instructions to each CPU with its own data.
 - No longer manufactured (PC prices much lower)
- Shared Memory Processors or Symmetric Multi-Processor (SMP) machines
 - Individual computers with 2 or more CPUs
 - Can achieve parallelism by running single program across the processors
 - Need special techniques when more than one CPU attempts to access the same data in memory (i.e. all interaction between processes is through SHARED MEMORY)

Copyright © 2004 University of Glasgov

Hardware Configurations

- Distributed clusters of machines
 - Each node in the cluster is an autonomous computer with its own operating system, memory and storage.
 - Two programming models:
 - Single Program Multiple Data (SPMD)
 - Same program runs everywhere on different sets of data
 - Loosely synchronous
 - Multiple Instruction Multiple Data (MIMD)
 - Different programs executed on different nodes on different sets of data
 - Asynchronous
 - Interactions performed by "Message Passing"

Message Passing

- Definition:
 - Message Passing is the process of sending data from a program running on one of the nodes, to a program running on one of the other nodes.
- All interaction between processes is achieved through an explicit exchange of messages.
 - Recap: processes can interact through either:
 - Message passing, or
 - Shared memory
 - What can we use for the Grid??

Shared Memory

• Standard:

- OpenMP
 - First standard for shared memory parallelism
 - Previous standard (X3H5) never completed!
 - Specification for a set of compiler directives, library routines, and environment variables that specify shared memory parallelism.
 - Geared towards tightly coded applications running on systems with globally addressable and cache coherent distributed memories.
 - Designed for FORTRAN and C/C++
- Not a standard that can be used to great effect on the Grid.

Message Passing

• Standard:

- Message Passing Interface (MPI)
 - A specification of a message passing library
 - First message passing interface standard (MPI Forum, 1992)
 - Sixty people from 40 different organisations
 - Two years of proposals meetings and reviews
 - Interface specifications for C and FORTRAN with Java binding being worked on
 - Allows for efficient implementation, portable source code and support for heterogeneous parallel architectures.

Copyright © 2004 University of Glasgov

Messages

- Messages between processes are simply packets of data with the following attributes:
 - Name of the sending process
 - Source location
 - Data type
 - Data size
 - Name of the receiving process
 - Destination location
 - Receive buffer size

Point-to-point communication

- Simplest form of message passing
 - One process sends a message to another
- Synchronous sends
 - Provides information about the message completion
 - You know they got it, but you may have to wait (e.g. beep from fax)
- Asynchronous sends
 - You only know that the message was sent
 - You don't have to wait, but you don't know if they got it. (posting a letter)

"I am process X" example

```
#include <mpi.h>
#include <stdio.h>
main (int argc, char **argv)
{
   int size,rank;
  MPI Init(&argc, &argv);
  MPI Comm size (MPI COMM WORLD, &size);
  MPI Comm rank(MPI COMM WORLD, &rank);
  printf("Hello, I am process %d of %d.\n", rank, size);
  MPI Finalize();
  exit(0);
```

MPICH-G2 – Globus compatible MPI library

Need more than just this though!

What about OGSA?

- Message Passing
 - Good for building applications that can run simultaneously across the grid.
- But we need a Grid Infrastructure for it to run on!
- Have heard about the Open Grid Services Architecture in the previous lecture...
 - Does it exist in real life?
 - No, but yes. (?!)

Copyright © 2004 University of Glasgow

The Globus Project

- Established 1995
 - U.S. Argonne National Laboratory
 - University of Southern California/Information Sciences Institute (USC/ISI)
 - University of Chicago
- Consortium dedicated to collaborative design, development, testing and support of the Globus Toolkit.

Copyright © 2004 University of Glasgow

The Globus Alliance

- The Globus Project became the Globus Alliance in 2003.
 - New members form international consortium:
 - Swedish Centre for Parallel Computers (PDC)
 - University of Edinburgh Parallel Computing Centre (EPCC)
 - Includes Academic Affiliates program with participation from Asia-Pacific, Europe and US
 - US federal sponsorship:
 - NASA, Department of Energy, National Science Foundation, Defense Advanced Research Projects Agency
 - Industry sponsorship:
 - IBM, Microsoft Research

The Globus Toolkit

- An open architecture, open source set of software services and libraries that support computational grids.
- Components can be used independently, or together to develop useful grid applications.

"the de facto standard for grid computing"

New York Times

Globus Toolkit timeline

- GT1 1998
 - GRAM and MDS
- GT2 2001
 - GridFTP, Packaging (GPT)
- GT3 2002 (deployment June 2003)
 - Implementation of OGSA
- GT4 soon!
 - Implementation of WSRF specification
 - Available in development release

Globus Toolkit 2 (GT2)

"100 most significant technical products of 2002"

R&D Magazine

 Current stable release GT2.4.3 will be used for the UK e-Science National Grid Service (online 2005)

- GT2 is still available
 - As a separate release (Most recent 2.4.4)
 - Encapsulated as the "Pre-WS/OGSA" components of GT3
 - The future is web services

Globus Toolkit 3

- Globus Toolkit 3 is an useable implementation of the Open Grid Services Infrastructure (OGSI)
 - Remember OGSI is a formal technical specification of the Grid Services defined in the Open Grid Services Architecture (OGSA)
- So, GT3 is an implementation of the OGSA framework

GT3 v GT2

- GT2 and GT3 both provide a set of Grid services for security, resource management, information access, and data management
- GT3 provides the same services as GT2, as well as extensions to the Globus protocol suite and grid service development tools.
- GT2 was designed before OGSA/OGSI, whereas GT3 is OGSI-compliant
- The primary benefit of using GT3 over GT2 is that GT3 implements standards that are being adopted by the e-Science and e-Business communities

Copyright © 2004 University of Glasgov

The Three Pillars

-----Grid Security Infrastructure (GSI)-----

The Globus Toolkit

Pillar Implementation

- Resource Management (this lecture)
 - Globus Resource Allocation Manager (GRAM)
 - Managed Job Service in GT3
- Information Services (in Lecture 5)
 - Metacomputing Directory Service (MDS)
 - Index Service in GT3
- Data Management (in Lecture 12)
 - GridFTP
 - Reliable File Transfer (RFT) in GT3
- All using the Grid Security Infrastructure (GSI) at the connection layer (Lecture 9).

- GT3 Core
 - Grid Service Implementation of OGSI v.1.0
 - (to follow in Lecture 6)
 - Common APIs
 - Notification (Source, Sink, Subscription)
 - Registration, Factory, Handle Resolver
 - State management
 - Container Framework (portability across platforms)
 - Development and Runtime Environment
 - For building new Grid Services

opyright © 2004 University of Glasgo

- GT3 Security Services
 - New Transport Layer/SSL protocol called "httpg" to indicate it's a GSI-enabled http-based protocol
 - SOAP layer security
 - XML Encryption
 - XML Signature
 - WS-Security
 - Use of X509 certificates for authentication
 - Use of X509 Proxy certificates for single sign on
 - Improved security model
 - Reduces amount of privileged code needed by a service
 - Easier to set up Gt3 behind a firewall
- Will be covered in detail in Lecture 9....

- GT3 Base Services
 - The "pillars" we have talked about
 - GRAM (Managed Job service)
 - End of todays lecture...
 - Want to check progress and have control over jobs
 - Index Service (see Lecture 5 on Monday)
 - Finding Grid Services out there which will work best for YOU
 - RFT (Reliable File Transfer)
 - Will be introduced in Lecture 12
 - Allows large file transfers to occur between the client and the Grid Servcie

GT3 Data Services

- Contains several non-OGSI (yet) compliant services
- GridFTP (used by Reliable File Transfer service)
- Replica Location Service (RLS)
 - Distibuted registry service that records the locations of data copies and allows discovery of replicas
 - Designed and implemented in collaboration with Globus and DataGrid projects
 - Handy for applications that deal with large sets of data.
 - We usually don't want to download the whole thing, just a subset.
 - Replica Management keeps track of these subsets for us

Other Grid Services

- Where non-GT3 services run....

Copyright © 2004 University of Glasgow

GRAM Requirements

- Given the specifications of a job, we want to provide a service which can
 - Create an environment for the job to run in
 - Stage any files to/from the job environment
 - Submit the job to a local scheduler
 - Monitor the job
 - Send notifications about the state of the job
 - Stream the job's stdout/err during execution

Pre-WS GRAM Implementation

- Resource Specification Language (RSL)
 - Used to communicate job requests
- Non-OGSI compliant services
 - Gatekeeper
 - Jobmanager
 - Remote jobs run under local users accounts
 - Client to service credential delegation done through a third party (the gatekeeper)

Resource Management

- Three main components to the Pre-WS Globus resource management system
 - Resource Specification Language (RSL)
 - Method of exchanging info about resource requirements
 - Globus Resource Allocation Manager (GRAM)
 - Standard interface to all the local resource management tools
 - Dynamically-Updated Request Online Coallocator (DUROC)
 - Coordinates single job requests which may span multiple GRAMs

GT3 GRAM Implementation

- Resource Specification Language
 - Communicates requirements (RSL-2 schema)
- Resource management services
 - (Master) Managed Job Factory Service (MMJFS)
 - Managed Job Service (MJS)
 - And...
 - File Stream Factory Service (FSFS)
 - File Stream Service (FSS)
 - Remote jobs run under local users accounts
 - Client to service credential delegation done user to user, not throug a third party)

Job Submission

- In GT3, job submission is based on the Grid Service Factory model
 - Create service
 - Service instance created, request validated
 - User's job request is ready to execute
 - Start Operation
 - User's job request starts
 - The service instance monitors the job request
 - Updates the request Service Data Element(s)
 - Job Control
 - Ensures client received a handle to the job before the resource is consumed

GT3 Job Submission example

Other Grid Technologies

- There exist many other Grid Technologies which are more geared to highly coupled systems
 - Xgrid (Apple)
 - Turns a group of Macs into a "supercomputer"
 - NET (Microsoft)
 - Infrastructure for Windows based grids with single sign on capability
 - Condor
 - CPU cycle harvesting across multi platform clusters
- Will be getting hands on experience with Condor in the Programming Exercise