
18 March 2004 Lecture 20 1

Review of Major Concepts

RTES4

18 March 2004 Lecture 20 2

Administrivia

Books donated by IBM available from Myra Smith in F162 (first
come – first served)

“Linux in a Nutshell - A Desktop Quick Reference” by Ellen
Siever (O'Reilly)
“Java and XML” by Brett McLaughlin (O'Reilly)
“Introduction to Programming in Java” by Patterson Hume &
Christine Stephenson (Holt Software Associates Inc.)

Please fill out the questionnaire before you leave today – we
really will look at them

Only lists Joe’s name - write in Colin on the next line to rate us both
Answers to problem sets 1 & 2 will be available from

http://www.dcs.gla.ac.uk/~joe/03-04RTES.html
by 17:00 today; your papers, together with the assessed marks,
will be available from Tracy Skelton during the week of 12 April

18 March 2004 Lecture 20 3

Scheduling definitions

A schedule is an assignment of all jobs in the system on the available
processors.
A valid schedule satisfies the following conditions:

Every processor is assigned to at most one job at any time
Every job is assigned at most one processor at any time
No job is scheduled before its release time
The total amount of processor time assigned to every job is equal to its
maximum or actual execution time
All the precedence and resource usage constraints are satisfied

A valid schedule is a feasible schedule if every job meets its
timing constraints.
A hard real time scheduling algorithm is optimal if the algorithm
always produces a feasible schedule if the given set of jobs has
feasible schedules.

18 March 2004 Lecture 20 4

Static, Timer-driven Scheduler

Since the parameters of jobs with hard deadlines are known before
the system begins to execute, construct a static schedule of the jobs
off-line; periodic static schedule == cyclic schedule
The amount of processor time allocated to every job is equal to its
maximum execution time
The static schedule guarantees that each job completes by its
deadline
The scheduler dispatches jobs according to the static schedule; as
long as no job ever overruns, all deadlines are met
Since the schedule is calculated off-line, we can employ complex,
sophisticated algorithms; in particular, we can choose a feasible
schedule from all possible feasible schedules that optimizes some
characteristic of the system (e.g. the idle periods for the processor
are nearly periodic to accommodate aperiodic jobs)

18 March 2004 Lecture 20 5

Static, Timer-driven Scheduler
Input: stored schedule (tk, T(tk)) for k = 0, 1, N – 1.
Task SCHEDULER:

set the next decision point I and table entry k to 0;
set the timer to expire at tk;
do forever:

accept timer interrupt;
if an aperiodic job is executing, preempt the job;
current task T = T(tk);
increment i by 1;
compute the next table entry k = I mod (N);
set the timer to expire at [I / N] * H + tk;
if the current task T is I,

let the job at the head of the aperiodic queue execute;
else,

let the task T execute;
sleep;

end do.
End SCHEDULER.

18 March 2004 Lecture 20 6

Cyclic Executives

A table-driven cyclic scheduler for all types of jobs in a multi-
threaded system
Table that drives the scheduler has F entries, where F = H / f; each
corresponding entry L(k) lists the names of the job slices that are
scheduled to execute in frame k; called a scheduling block
Cyclic executive takes over the processor and executes at the clock
interrupt that signals the start of a frame

It determines the appropriate scheduling block for this frame
It executes the jobs in the scheduling block
It wakes up jobs in the aperiodic job queue to permit them to use
the remaining time in the frame

Major assumptions:
Existence of a timer
Each timer interrupt is handled by the executive in a bounded
time

18 March 2004 Lecture 20 7

Pros of Clock-driven Scheduling

Conceptual simplicity
Ability to consider complex dependencies, communication delays, and
resource contention among jobs when constructing the static schedule,
guaranteeing absence of deadlocks and unpredictable delays
Entire schedule is captured in a static table
Different operating modes can be represented by different tables
No concurrency control or synchronization required
If completion time jitter requirements exist, these can be captured in the
static schedule[s]

When the workload is mostly periodic and the schedule is cyclic,
timing constraints can be checked and enforced at each frame
boundary
Choice of frame size can minimize context switching and
communication overheads
Such systems are relatively easy to validate, test and certify

18 March 2004 Lecture 20 8

Cons of Clock-driven Scheduling

Such systems are inflexible – precompilation of knowledge
into the scheduling tables means that if anything changes
materially, have to redo the table generation – as a result,
best suited for systems which are rarely modified once built
Other disadvantages:

1. Release times of all jobs must be fixed
2. All combinations of periodic tasks that might execute at

the same time must be known a priori so that the
combined schedule can be precomputed

3. The treatment of aperiodic jobs is very primitive; if there is
a significant amount of soft-real-time computation in the
system, it is unlikely that this structure will yield
acceptable response times

18 March 2004 Lecture 20 9

Priority-driven Scheduling of Periodic
Tasks

Fixed-priority vs. Dynamic-priority Algorithms
A priority-driven scheduler is an on-line scheduler

It does NOT precompute a schedule of tasks/jobs
It assigns priorities to jobs when they are released and places them on a
ready job queue in priority order
When preemption is allowed, a scheduling decision is made whenever a job is
released or completed
At each scheduling decision time, the scheduler updates the ready job queue
and then schedules and executes the job at the head of the queue

A fixed-priority algorithm assigns the same priority to all the jobs in a task.
A dynamic-priority algorithm assigns different priorities to the individual
jobs in a task.
The priority of a job is usually assigned upon its release and does not
change
Three categories of algorithms:

Task-level fixed-priority
Task-level dynamic-priority and job-level fixed-priority
Job-level dynamic-priority

18 March 2004 Lecture 20 10

Priority-driven Scheduling of Periodic
Tasks

Fixed-priority Algorithms
Rate-monotonic algorithm (RM)

Assigns priorities to tasks based on their periods – the shorter
the period, the higher the priority
Since the rate is (period)-1, the higher the rate, the higher the
priority

Deadline-monotonic algorithm (DM)
Assigns priorities to tasks according to their relative deadlines –
the shorter the relative deadline, the higher the priority

When the relative deadline of every task is proportional to its period,
the RM and DM algorithms give identical results
When the relative deadlines are arbitrary, the DM algorithm
performs better in the sense that it can sometimes produce a
feasible schedule when RM fails, while RM always fails when DM
fails

18 March 2004 Lecture 20 11

Priority-driven Scheduling of Periodic
Tasks

Dynamic-priority algorithms
Earliest-deadline-first (EDF)

The job queue is ordered by earliest deadline
Least-slack-time-first (LST)

The job queue is ordered by least slack time
Nonstrict – scheduling decisions are made only when jobs are
released or completed
Strict – scheduling decisions are made also whenever a queued
job’s slack time becomes smaller than the executing job’s slack
time – huge overheads, not used

First-in-first-out (FIFO)
Job queue is first-in-first-out by release time

Last-in-first-out (LIFO)
Job queue is last-in-first-out by release time

18 March 2004 Lecture 20 12

Priority-driven Scheduling of Periodic
Tasks

Relative merits
Algorithms that do not take into account the urgencies of
jobs in priority assignment usually perform poorly (FIFO,
LIFO)
Algorithms are ranked by their ability to maximize the
utilization of the system in terms of meeting job deadlines –
maximum value of 1 – EDF is optimal in this sense, while
RM and DM are not
EDF continues to give high priority to jobs that have
already missed their deadlines relative to a job whose
deadline is in the future; therefore, EDF is not particularly
suitable to systems where overload conditions are
unavoidable

18 March 2004 Lecture 20 13

Priority-driven Scheduling of Periodic
Tasks

The schedulable utilization of the EDF algorithm
Theorem: A system T = {Ti, I = 1..n} of independent, preemptable
periodic tasks with Di = pi can be feasibly scheduled on one
processor if and only if U(T) ≤ 1. (proof covered next Tuesday)
Corollaries:

A system T of independent, preemptable periodic tasks with
Di > pi can be feasibly scheduled on a processor as long as
U(T) ≤ 1
UEDF(n) for n independent, preemptable periodic tasks with
Di ≥ pi is 1.
ULST(n) for n independent, preemptable periodic tasks with
Di ≥ pi is 1.

Note that all of these results are independent of φi

18 March 2004 Lecture 20 14

Priority-driven Scheduling of Periodic
Tasks

What happens if Di < pi for some i?
Define τi = min(Di, pi)
The density for Ti, δi = ei / τi
The density of the system, ∆(T) = δ1 + δ2 + … + δn
Theorem: A system T of independent,
preemptable periodic tasks can be feasibly
scheduled on one processor if ∆(T) ≤ 1.

Note that this is not a necessary condition, it
is simply sufficient – i.e. a system may be
feasible when ∆(T) > 1.

18 March 2004 Lecture 20 15

Priority-driven Scheduling of Periodic
Tasks

Schedulability testing
A test for the purpose of validating that the given application
system meets all its hard deadlines when scheduled according to
a particular scheduling algorithm is a schedulability test.
If a schedulability test is efficient, then it can be used as an on-
line acceptance test.

Schedulability test for EDF
∆(T) ≤ 1
What do we conclude if this test is not satisfied?

If Di ≥ pi for all i, then the system is not schedulable
If Di < pi for some i, the system may not be schedulable

This test is robust – i.e. the test holds true if some jobs execute
for less than their maximum execution times; it also holds true if
the interrelease times of jobs in a task are longer than the period
(minimum interrelease time)

18 March 2004 Lecture 20 16

Priority-driven Scheduling of Periodic
Tasks

Optimality of the RM and DM algorithms
We’ve already seen examples wherein these fixed-priority
algorithms are not optimal
In fact, if the periods of the tasks in the system are related
appropriately, then the RM and DM algorithms are optimal
A system of periodic tasks is simply periodic if for every pair of
tasks Ti and Tk in the system and pi < pk, pk is an integer multiple
of pi. (Recall our avionics example from lecture 2.)
Theorem: A system of simply periodic, independent, preemptable
tasks whose relative deadlines are ≥ their periods is schedulable
on one processor according to the RM algorithm iff its total
utilization is ≤ 1.
Corollary: The same is true for the DM algorithm.
Since fixed-priority algorithms are more constrained, why would
one choose to use them?

They often lead to more predictable and stable systems

18 March 2004 Lecture 20 17

Priority-driven Scheduling of Periodic
Tasks

Schedulable utilization of the RM algorithm
Assume Di = pi for all I
Arbitrary relationships between relative deadlines of tasks
URM(n) = n (21/n – 1)
For large n, approaches ln 2 (0.693)
U(T) ≤ URM(n) is a necessary condition – i.e. if U(T) > URM(n) , the
RM algorithm (or better yet, the DM algorithm) may be able to
find a feasible schedule

0.6960.7050.7070.7080.7100.7140.7180.7240.7350.7570.828URM(n)

1002018161412108642n

18 March 2004 Lecture 20 18

Priority-driven Scheduling of Periodic
Tasks

Practical factors
A ready job is blocked when it is prevented from executing by a
lower-priority job
A priority inversion occurs whenever a lower-priority job
executes while some ready higher-priority job waits
Nonpreemptability

Many reasons why a job may have nonpreemptable sections
Critical section over a resource
Some system calls are nonpreemptable
Disk scheduling

If a job becomes nonpreemptable, priority inversions may occur
When attempting to understand whether a task meets all of its
deadlines, we must consider not only all the tasks that have higher
priorities than that task, also the nonpreemptable portions of lower-
priority tasks

18 March 2004 Lecture 20 19

Priority-driven Scheduling of Periodic
Tasks

Practical factors (continued)
Nonpreemptability (continued)

Define bi(np) as the longest amount of time for which any
job in the task Ti can be blocked each time it is blocked due
to nonpreemptive lower-priority tasks

Self-suspension
A job may invoke an external operation (e.g. request and
I/O operation), during which time the job is suspended

Context Switches
Assume we know the maximum number of context switches
Ki for a job in Ti
Can add 2(Ki + 1) tCS to the execution time of Ti

18 March 2004 Lecture 20 20

Priority-driven Scheduling of Periodic
Tasks

Schedulability test for fixed-priority tasks
Since we cannot count on any particular relationships among the
phases of tasks in a fixed-priority system, we must identify the
worst-case combination of release times of any job Ji,c in Ti and all
the jobs that have higher priorities than Ji,c
This combination is the worst-case because the response time of
Ji,c released in such a situation is the largest possible of all
combinations of release times
We, therefore, define a critical instant of a task Ti as a time
instant such that:

The job in Ti released at that instant has the maximum response time of
all jobs in Ti (if the response time of every job in Ti is equal to or less
than the relative deadline Di), and
The response time of the job released at that instant is greater than Di if
the response time of some jobs in Ti exceed Di

The response time of a job in Ti released at a critical instant is
called the maximum (possible) response time

18 March 2004 Lecture 20 21

Priority-driven Scheduling of Periodic
Tasks

Theorem: In a fixed-priority system where every job
completes before the next job in the same task is released,
a critical instant occurs when one of its jobs Ji,c is released
at the same time with a job from every higher-priority task.
Why is this important? It turns out that our schedulability
test for fixed-priority tasks will be based upon showing that
a job Ji,c released at a critical instant completes by its
relative deadline, Di – i.e. we don’t have to simulate the
entire system, we simply have to show that the system has
the correct characteristics following a critical instant; in
particular, if there are N tasks in the system, we have to
show that JN,c completes by its relative deadline, DN

18 March 2004 Lecture 20 22

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

rejection

Acceptance
Test

Sporadic
Jobs

Periodic
Jobs Processor

Aperiodic
Jobs

18 March 2004 Lecture 20 23

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

More definitions
A correct schedule is one for which periodic and accepted sporadic
tasks never miss their deadlines
An aperiodic or sporadic scheduling algorithm is correct if it produces
only correct schedules of the system.
An aperiodic job scheduling algorithm is optimal if it minimizes either
the response time of the job at the head of the aperiodic job queue
OR the average response time of all aperiodic jobs for the given
queueing discipline
A sporadic job scheduling algorithm (acceptance + scheduling) is
optimal if it accepts each newly arrived sporadic job and schedules
the job to complete by its deadline if and only if the new job can be
correctly scheduled to complete in time by some means – note that
this is different from the definition of optimal on-line algorithms
discussed previously, as that definition required that ALL offered
sporadic jobs had to be accepted and completed in time

18 March 2004 Lecture 20 24

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Polled Executions
A poller or polling server is a periodic task TS
with pS as its polling period and eS as its
execution time.
When the poller executes, it examines the
aperiodic job queue; if the queue is nonempty, it
executes the job at the head of the queue.
The poller suspends its execution or is suspended
by the scheduler either when it has executed for
eS units of time in the period or when the
aperiodic job queue becomes empty.

18 March 2004 Lecture 20 25

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Bandwidth-preserving server algorithms
A deficiency of the polling server algorithm is that if the
server is scheduled when it is not backlogged, it loses its
execution budget until it is replenished when it is next
released; an aperiodic job arriving just after the polling
server has been scheduled and found the aperiodic job
queue empty will have to wait until the next replenishment
time
We would like to be able to preserve the execution budget
of the server when it finds an empty queue, such that it can
execute an aperiodic job that arrives later in the period if
doing so will not affect the correctness of the schedule
Algorithms that improve the polling approach in this
manner are called bandwidth-preserving server
algorithms

18 March 2004 Lecture 20 26

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Deferrable server
The simplest of BP servers
Consumption rule – the execution budget of the
server is consumed at the rate of one per unit
time whenever the server executes
Replenishment rule – the execution budget of the
server is set to eS at time instants kpS, for k = 0, 1,
2, …
Note that the server is not allowed to carry over
budget from period to period

18 March 2004 Lecture 20 27

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Schedulability of deadline-driven systems with a deferrable
server

The deadline of a deferrable server is its next replenishment
time
A period task Ti in a system of N independent, preemptive,
periodic tasks is schedulable with a deferrable server with period
pS, execution budget eS, and utilization uS, according to the EDF
algorithm if

11
),min(1

≤





 −
++∑

= i

ss
s

N

k kk

k

D
epu

pD
e

Note that if the deferrable server was being treated just like any other
periodic task, the second term on the left hand side would just be uS.

18 March 2004 Lecture 20 28

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Sporadic servers
Limitation of deferrable servers – they may delay
lower-priority tasks for more time than a periodic
task with the same period and execution time
Sporadic server are designed to eliminate this
limitation. Its consumption and replenishment
rules ensure that a sporadic server with period pS
and budget eS never demands more processor
time than a periodic task with the same
parameters

18 March 2004 Lecture 20 29

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Consumption and replenishment rules
Definitions

tr denotes the latest (actual) replenishment time
tf denotes the first instant after tr at which the server begins to
execute
te denotes the latest effective replenishment time
At any time t, BEGIN is the beginning instant of the earliest busy
interval among the latest contiguous sequence of busy intervals of TH
that started before t.
END is the end of the latest busy interval in this sequence if this
interval ends before t and equal to ∞ if the interval ends after t

The scheduler sets tr to the current time each time it replenishes the
server’s execution budget.
When the server first begins to execute after a replenishment, the
scheduler determines the latest effective replenishment time te
based on the history of the system and sets the next replenishment
time to te+pS

18 March 2004 Lecture 20 30

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Recall Simple Sporadic Server for fixed-priority
Release rules: the server is enabled whenever it is backlogged and
has budget
Consumption rules: budget is consumed when

1. the server is executing
2. the server has executed since tr and (lower-priority jobs are

executing OR the system is idle)
Replenishment rules

1. initially, and at each replenishment time, budget := es and set tr :=
current time

2. tf is the time that the server is 1st scheduled after tr; calculate te as:
a. If tf coincides with the end of a higher-priority job, te := max(tr, BEGIN)
b. If lower-priority job or idle system preceded tf, te := tf

the next replenishment time is set for te + ps
3. Replenishment occurs at te + ps except …

a. If te + ps < tf, budget is replenished as soon as exhausted
b. If system idles before te + ps and becomes busy again at tb < te + ps, the

budget is replenished at tb

18 March 2004 Lecture 20 31

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

What do these rules really mean?
View each replenishment time as the nominal “release time” of a server job;
actual release time is te
C1 implies each server job executes for no more time than its execution
budget
C2 implies that the server retains its budget if

A higher-priority job is executing, or
It has not executed since tr
This implies that if the server idles while it has budget, budget continues to
decrease over time

R2 makes the effective replenishment time as soon as possible
commensurate with the server acting like a periodic task (, ps, es)
R3a assumes that Ds > ps, and that this fact was taken into account in
determining the schedulability of the system
The system is correct without rule R3b; the text discusses why it is still
correct with R3b; in essence, it causes replenishment to happen sooner if
the system becomes busy after an idle interval that the system will be
able to react more quickly to the arrival of an aperiodic task

18 March 2004 Lecture 20 32

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Simple Sporadic Server for dynamic-priority (EDF)
Release rules: the server is enabled whenever it is backlogged, it has
budget, and its deadline d is defined
Consumption rules: budget is consumed when

1. the server is executing
2. the deadline d is defined, the server is idle, and there are no jobs with a

deadline before d ready for execution
Replenishment rules

1. initially, and at each replenishment time, budget := es and set tr := current
time; initially, te and d are undefined

2. whenever te is defined, d = te + ps, and the next replenishment time is te + ps;
te defined as follows:

a. At time t when an aperiod job arrives at an empty queue
i. If only jobs with deadlines earlier than tr + ps have executed in (tr, t), te := tr
ii. If any jobs with deadlines after tr +ps have executed in (tr, t), te := t

b. At replenishment time tr
i. If server is backlogged, te := tr
ii. If server is idle, te and d become undefined

3. Replenishment occurs at te + ps except …
a. If te + ps < t when server first becomes backlogged after tr, budget is replenished as

soon as exhausted
b. budget is replenished at end of each idle interval of T

18 March 2004 Lecture 20 33

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Constant Utilization Server
Server size is its instantaneous utilization ũS - this is the
fraction of the processor time reserved for the execution of
aperiodic jobs
As with deferrable servers, the deadline d of a constant
utilization server is always defined
A constant utilization server emulates a sporadic task with
a constant instantaneous utilization
Assume ũS is the size of the server, eS is its budget, d is its
deadline, t is the current time, and e denotes the execution
time required by the job at the head of the aperiodic queue

18 March 2004 Lecture 20 34

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Constant Utilization Server (continued)
Consumption rule: it only consumes budget when it executes
Replenishment rules

1. Initially, eS := 0 and d := 0.
2. When an aperiodic job with execution time e arrives at time t to an

empty aperiodic job queue
a. If t < d, do nothing
b. If t ≥ d, d := t + e/ũS and eS = e

3. At the deadline d of the server
a. If the server is backlogged, d := d + e/ũS and eS = e
b. If the server is idle, do nothing

A constant utilization server is always given enough budget to
complete the job at the head of its queue each time its budget is
replenished; the deadline is set so that its instantaneous
utilization is equal to ũS.

18 March 2004 Lecture 20 35

Scheduling Aperiodic and Sporadic Jobs in
Priority-driven Systems

Total Bandwidth Server
This algorithm improves the responsiveness of a constant
utilization server by allowing the server to claim the background
time not used by the periodic tasks
Replenishment rules:

1. Initially, eS := 0 and d := 0
2. When an aperiodic job with execution time e arrives at time t at an

empty aperiodic job queue, d := max(d,t) + e/ũS and eS := e
3. When the server completes the current aperiodic job, the job is

removed from the queue and
a. If the server is backlogged, d := d + e/ũS and eS := e
b. If the server is idle, do nothing

As long as a total bandwidth server is backlogged, it is
ALWAYS ready for execution

18 March 2004 Lecture 20 36

Resources and Resource Access Control

Basic Priority-inheritance Protocol
Works with any preemptive, priority-driven
scheduling algorithm
Does not require any prior knowledge of the jobs’
resource requirements
Does NOT prevent deadlock
If one uses some other mechanism to prevent
deadlock, it ensures that no job is ever blocked
indefinitely due to uncontrolled priority inversion

18 March 2004 Lecture 20 37

Resources and Resource Access Control

Basic Priority-inheritance Protocol
Scheduling Rule: ready jobs are scheduled on the processor
preemptively in a priority-driven manner according to their current
priorities. At its release time t, the current priority π(t) of every job
J is equal to its assigned priority. It remains at this priority except
when the priority-inheritance rule is invoked.
Allocation Rule: when a job J requests a resource R at time t:

If R is free, R is allocated to J until J releases it
If R is not free, the request is denied and J is blocked

Priority-inheritance rule: when the requesting job J becomes
blocked, the job Jl which blocks J inherits the current priority π(t)
of J; Jl executes at its inherited priority until it releases R; at that
time, the priority of Jl returns to its priority πl(t’) at the time t’ when
it acquired the resource R

18 March 2004 Lecture 20 38

Resources and Resource Access Control

What does this mean?
A job J is only denied a resource when the
resource it requests is held by another job
At time t when J requests the resource, it has the
highest priority among all ready jobs the
current priority πl(t) of the job Jl directly blocking J
is never higher than the priority π(t) of J

18 March 2004 Lecture 20 39

Resources and Resource Access Control

Properties of the Priority-inheritance Protocol
Different types of blocking

Direct blocking (time 6)
Priority-inheritance blocking (time 6)
Transitive blocking (time 9)

Does NOT prevent deadlock – simple piecemeal
acquisition in different orders problem
Does not minimize the blocking times suffered by
jobs since it is so aggressive

18 March 2004 Lecture 20 40

Resources and Resource Access Control

Priority-ceiling Protocol
Extends priority-inheritance to prevent deadlock and to further
reduce blocking times
Makes two key assumptions:

The assigned priorities of all jobs are fixed
The resources required by all jobs are known a priori before the
execution of any job begins

Need two additional terms to define the protocol:
The priority ceiling of any resource Rk is the highest priority of all
the jobs that require Rk and is denoted by Π(Rk)
At any time t, the current priority ceiling Π(t) of the system is equal to
the highest priority ceiling of the resources that are in use at the time;
if all resources are free at the time, Π(t) is equal to Ω, a nonexistent
priority level that is lower than the lowest priority level of all jobs

18 March 2004 Lecture 20 41

Resources and Resource Access Control

The Basic Priority-Ceiling Protocol
Scheduling rules

a. At its release time t, the current priority π(t) of every job J is equal to its
assigned priority; it remains at that priority except as defined in the priority-
inheritance rule

b. Every ready job J is scheduled preemptively and in a priority-driven manner
at its current priority π(t)

Allocation rules – whenever a job J requests a resource R at time t, one of
the following occurs:

a. R is held by another job; J’s request fails and J becomes blocked
b. R is free

i. If J’s priority π(t) is higher than the current priority ceiling Π(t), R is allocated to J
ii. If J’s priority π(t) is not higher than the ceiling Π(t), R is allocated to J only if J is the

job holding the resource(s) whose priority ceiling is equal to Π(t); otherwise, J’s
request is denied, and J becomes blocked

Priority-inheritance rule: when J becomes blocked, the job Jl which blocks J
inherits the current priority π(t) of J; Jl executes at its inherited priority until
the time when it releases every resource whose priority ceiling is equal to
or higher than π(t); at that time, the priority of Jl returns to its priority πl(t’) at
the time t’ when it was granted the resource(s)

18 March 2004 Lecture 20 42

Resources and Resource Access Control

Important results for priority-ceiling
When resource accesses of a system of preemptive,
priority-driven jobs on one processor are controlled by the
priority-ceiling protocol, deadlock can never occur
(remember, this was for fixed-priority algorithms).
When resource accesses of preemptive, priority-driven
jobs on one processor are controlled by the priority-ceiling
protocol, a job can be blocked for at most the duration of
one critical section – i.e. there is no transitive blocking
under the priority-ceiling protocol.

18 March 2004 Lecture 20 43

Real-Time Operating Systems Concepts

Differences from general purpose systems
Flexible microkernel architecture
Emphasis on predictability, not performance
Embedded in, interacting with, a larger system

Hardware customised to the application
Sensors and actuators; interaction with the environment
Closed system, trusted applications

Often resource constrained and safety critical
Strong reliability requirements

18 March 2004 Lecture 20 44

Features of Real-Time Operating Systems

Clocks and Timers
Nanokernels, implementing a cyclic executive
Clock interrupts and timer services

Resolution, accuracy and stability
Timer and scheduling jitter, latency, effects on scheduling

Interrupt handling
Blocking due to device access; non-preemptable regions
Scheduled tasks to service interrupts

Memory access and protection
Overheads; desirability (or otherwise) of memory protection
Effects on system call and interrupt latency

18 March 2004 Lecture 20 45

Implementation of Tasks

Task implementation using threads and processes
Thread control block and context
Task parameters

Periodic thread abstraction
Benefits of the abstraction; simplified programming model
Implementation issues

Sporadic and aperiodic threads
Implementation using a background server thread

Need for an acceptance test before starting a real-
time task, to ensure it is schedulable

18 March 2004 Lecture 20 46

Implementation of Schedulers

Task state diagram, mapping
onto scheduler queues
Scheduler queue structures
to implement fixed priority
scheduling

Example: Rate Monotonic
Dynamic priority scheduling

Expensive using the queue
architecture for fixed priority
Queuing structure to directly
support EDF scheduling
Sporadic and aperiodic tasks

Background servers
Trivial implementation of a
slack stealer
Why more complex servers
need scheduler support for
efficiency

Tasks with temporal distance
constraints; DCM scheduling
Scheduling real time and non-
real time tasks together

Open system architecture and
the two-level scheduler

18 March 2004 Lecture 20 47

Scheduling Standards and APIs

POSIX 1003.1b real time scheduling
Outline of the API
Scheduling classes: FIFO and RR tasks, difference from
other time sharing tasks
Scheduling parameters

POSIX 1003.1c “pthreads”
Similarity to the POSIX 1003.1b API
Implementation of threads, mapping onto kernel scheduled
entities, effects on thread scheduling

18 March 2004 Lecture 20 48

Implementing and using POSIX scheduling

The POSIX real-time scheduling abstraction
Implementation on a fixed priority queue scheduler

Use of POSIX scheduling primitives to implement:
Rate Monotonic

Effects of limited priority levels
Slack stealing background tasks

Understanding of why other types of server are difficult to
implement under the POSIX scheduling abstraction
Need direct scheduler support

Extending the POSIX APIs
Possible implementation of EDF and other algorithms

18 March 2004 Lecture 20 49

Resource Access Control

Locking and critical sections
Concurrency primitives

Semaphores, mutexes and
condition variables
Priority inheritance support
in POSIX mutexes

Implementation of priority
inheritance

Complexity of operations;
amount of queue walking

Priority inheritance and
stack-based priority ceiling
protocol

Comparison of scheduling
Implementation strategies

Message queues, signals
and events

Prioritization and message
based priority inheritance
Synchronous, asynchronous
and blocking messages

18 March 2004 Lecture 20 50

Flexible Applications

Real-time on general purpose
systems
Flexible computation

Sieve
Milestone
Multiple versions

Workload model for flexible
jobs
Dependent jobs

Criteria of optimality
Characteristics of error
functions

Scheduling flexible applications
Off-line
On-line and approximate;
heuristics

18 March 2004 Lecture 20 51

Real-Time Communications

Modelling both generic and
packet networks

Queuing delays, transit time
Performance metrics: loss,
throughput, delay, jitter

Jitter distribution; modelling
Clock skew

Application requirements
Sensitivity to throughput,
absolute delay, delay jitter

Scheduling communications
in Controller Area Networks
Modelling the approximate
properties of an IP network

Understanding variability
inherent in IP networks
Examples of performance

Understanding that the
network is a resource that
can be scheduled and
modelled

18 March 2004 Lecture 20 52

Quality of Service in Packet Networks

Requirements to implement
enhanced service networks

Packet scheduling algorithm
Admission control
Signalling protocol (RSVP)

Service disciplines
Provision of a proportional
fair share, timing isolation
Making packet networks
predictable

Weighted fair queuing
Properties; service guarantees

Per-hop and end-to-end
delay, given assumptions

Packet scheduling algorithm,
concepts and implementation
Approximation using frame-
based WFQ

Weighted round robin
Implementation
Guarantees on throughput and
delay bounds

18 March 2004 Lecture 20 53

Real-Time on IP networks

Behaviour of IP
Timing properties of UDP and TCP
Reliability/timeliness tradeoff
Overview of RTP

End-to-end principle
Application layer framing
Protocol overview

Media playout and synchronisation
Playout buffers, choosing buffering delay

18 March 2004 Lecture 20 54

The End…

Revision lecture on 27th April, 3pm, F171
Answers to sample exam will be discussed

Any questions?

	Review of Major Concepts
	Administrivia
	Scheduling definitions
	Static, Timer-driven Scheduler
	Static, Timer-driven Scheduler
	Cyclic Executives
	Pros of Clock-driven Scheduling
	Cons of Clock-driven Scheduling
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Priority-driven Scheduling of Periodic Tasks
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Scheduling Aperiodic and Sporadic Jobs in Priority-driven Systems
	Resources and Resource Access Control
	Resources and Resource Access Control
	Resources and Resource Access Control
	Resources and Resource Access Control
	Resources and Resource Access Control
	Resources and Resource Access Control
	Resources and Resource Access Control
	Real-Time Operating Systems Concepts
	Features of Real-Time Operating Systems
	Implementation of Tasks
	Implementation of Schedulers
	Scheduling Standards and APIs
	Implementing and using POSIX scheduling
	Resource Access Control
	Flexible Applications
	Real-Time Communications
	Quality of Service in Packet Networks
	Real-Time on IP networks
	The End…

