
Low-level Programming

Colin Perkins
http://csperkins.org/teaching/2003-2004/rtes4/lecture19.pdf

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Lecture Outline

• Administrivia
• Lessons to learn from the programming assignment
• Interrupt and timer latency
• Memory issues

– Protection
– Virtual memory
– Allocation, locking, leaks and garbage collection
– Caching

• Power, size and performance constraints
• System longevity
• Case studies

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Administrivia

• Return of assignments:
– Problem sets 1 & 2 should be returned this week
– Programming assignment will be returned after Easter

• Revision lecture: 27th April, 3pm

• Examination:
– 80% of grade derived from exam mark

• Answer 3 out of 4 questions
• 2 questions from each part of the course

– Sample exam distributed today
– Sample answers will be provided and discussed in the revision

lecture

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Programming Assignment

• Lightly loaded hosts show little jitter
• Inter-packet spacing is usually 20ms

– Do see occasional 10ms spacing

• Scheduling granularity is 10ms, but
process gets woken up on the tick
after it’s deadline has passed

• Heavily loaded hosts show much
more variability, packets being
delayed and arriving in bursts

• Linux is not suitable for VoIP with
10ms packet duration
– Would be suitable with 20ms packet

duration on lightly loaded hosts
– On heavily loaded hosts, jitter buffer

would be too large for interactive use

R
e
ce

iv
e
r

R
e
ce

iv
e
r

Sender

Lightly
loaded

host

Sender

Heavily
loaded

host

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Programming Assignment: Lessons to Learn

• A general purpose operating system is not optimised for
real-time use; it has a different purpose:
– Fair sharing of resources
– Good average case performance; at expense of worst case
– Protection from untrusted users

all of which worsen real-time performance!

• Some problems can be mitigated:
– Recompile kernel with 1ms clock interrupt
– Run as root, using high priority POSIX real-time scheduling
– Lock pages into memory, to avoid memory paging delays
– Run on a lightly loaded system, forbid access to hardware

devices unless audited for latency
…essentially, close the system

“You Can Put Racing Stripes on a Bulldozer,
But it Won’t Go Any Faster”

…the RTLinux manifesto

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Interrupt and Timed Task Latency

• Standard Linux has ~600µs interrupt handler latency, and
hard to get scheduled tasks to execute within 20,000µs of
their scheduled time
– High frequency timer interrupt can reduce scheduling latency to

~1000µs

• RTLinux claims a maximum 15µs interrupt handler latency,
scheduled tasks execute within 35µs of their scheduled time

• Why such a difference?
– Preemptable microkernel, with single address space

• No context switch, user-to-kernel mode, overhead

– No virtual memory or memory protection
• No paging delays
• No delays while page tables adjusted

– Device drivers designed with minimal non-preemptable sections
• Light-weight, prioritised, threads fire in response to interrupts

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Memory Protection/Context Switch Overhead

• Many embedded systems use a single flat address space
– Applications, shared libraries, kernel, devices all visible
– A system or library call is equivalent to a function call

KernelApplication

• Makes system calls, interrupts, very fast and predictable
– No context switch to kernel mode
– No adjustment of MMU page tables

• Consequences:
– No isolation between applications, or between applications and

the kernel
– A change to one part implies that the entire system has to be

revalidated; difficult as systems become larger

⇒ Some systems offer limited protection
– Read only mapping of program/system text; IRQ vectors
– Optional full memory protection

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Memory Protection

• Consequences of offering memory protection:
– Unpredictable latency

• May take longer to task switch to/from a protected task

– Memory overhead
• Protection provided on a per-page basis, leads to wastage
• Overhead of maintaining the page tables and protection maps

– Code overhead
• Operating system is required to trap illegal access and recover

system to a safe state

• Which is easiest: proving the system correct, or writing
handlers to safely recover from all possible failures?

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Virtual Memory: Address Translation

• Two aspects to virtual memory:
– Address translation
– Paging to disk

• Address translation (or “virtual contiguity”) is the act of
making a fragmented block of physical memory appear
to be a single contiguous block
– Useful in dynamic systems, since it enables requests for large

blocks of memory to be allocated when there is no physically
contiguous block available

– Adds overhead, since the system has to manage address
translation tables

• Uses memory, increases context switch time
• Complicates DMA device access

• Often better to pre-allocate static pools of memory for real-
time tasks; allocate from them to the application
– Manage the sub-division of address space within the application

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Virtual Memory: Locking and Paging

• Disk based virtual memory is supported by many systems
that run both real time and non-real time tasks

• Should be obvious that paging to disk is harmful to the real
time tasks

• System will provide control to prevent paging:
– POSIX: mlock(addr, len) and mlockall()

• Privileged, but would have significantly improved performance in
the exercise when under load

– Windows NT can specify that all memory owned by a particular
thread is locked

– LynxOS has a mode where pages of higher priority tasks are
locked in memory, but new allocations can page out memory
belonging to lower priority tasks

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Memory Leaks and Garbage Collection

• An embedded system has to run for a long period of time,
without user intervention

• Real-time garbage collection – with predictable latency, at
controlled times – is possible…

• …but most embedded systems still programmed in C

• Problematic in small or long-lived systems…
– Most C programs have memory leaks due to programmer error
– Better to pre-allocate all memory in static buffers, to avoid the

chance of a memory leak
– Be very careful to free resources (memory) after use
– Do you always check for out of memory errors? And recover

gracefully?
• Remember the recovery code cannot allocate memory
• This may include the stack frame needed to make a function call!

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
What is a Small System?

You may be running on a Z80 processor, with 64kbytes RAM…
• The QNX 4.x microkernel is approximately 12kbytes in size
• The VRTX microkernel is typically 4-8kbytes in size
For comparison…

-->uname -srm
FreeBSD 4.9-STABLE i386
-->cat tst.c
int main()
{

return 0;
}
-->gcc tst.c -o tst
-->ls -l tst
-rwxrwx--- 1 csp csp 4206 Mar 16 21:15 tst
-->strip tst
-->ls -l tst
-rwxrwx--- 1 csp csp 2704 Mar 16 21:15 tst
-->

…on Linux, the binary is 50% larger

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Effects of Cache

• You may be running on a more modern processor…
– PowerPC 405CR embedded processor

• 32 bit RISC processor, compatible with desktop PowerPC
• 133MHz or 266MHz clock speed
• CodePackTM compression of executables
• Likely has several megabytes of memory

– Relatively cheap, comparatively high performance, low power

• Has a small cache, which you may want to disable:
– Processor and memory speeds are closely matched

• Compare to desktop processor, with order magnitude difference

– Simpler to predict memory access times without the cache
– Cache improves average response times, but introduces

unpredictability

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Power, Size and Performance Constraints

• Many embedded systems are battery powered or run in
power sensitive environments

• What influences power consumption?
– Power consumption ∝ (clock speed)2

– Memory size
– Processor utilization

• May have to be physically small and/or robust
• May have strict heat production limits
• May have strict cost constraints

– That processor is slower, but 10¢ cheaper, the production run
is 1 million, you paid your salary for the next couple of years…

• We’re used to throwing hardware at a problem, and writing
inefficient – but easy to implement – software
– Software engineering based around programmer productivity
– The constraints may be different in the embedded world…

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
System Longevity

Real time embedded systems are often safety critical…
– Medical devices
– Automotive or flight control
– Railway signalling
– Industrial machinery

…or just difficult to upgrade
– CD or DVD player
– Washing machine
– Microwave oven

• May need to run for several years, in an environment where
failures either kill people, or are incredibly expensive to fix
– Do you check all the return codes and handle all errors?
– Fail gracefully?
– Can you guarantee your system will run for 10 years without

crashing?

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Case Studies

• VxWorks
• QNX
• Symbian

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Case Study: VxWorks

• Monolithic kernel
• Implements most of POSIX with real time extensions
• Proprietary APIs to control more advanced features

– Message queues with timeouts
– Control of priority inheritance on semaphores
– User processes can enable/disable interrupts

• Defaults to a single address space, with address translation
– Processes can request memory protection, if desired
– Processes can control which regions of memory are cached

• Focus on hard real time, deeply embedded systems
– Runs on the Mars rovers, Pathfinder

• Pathfinder had problems due to uncontrolled priority inversion
causing some tasks to miss their deadlines

• Caused system to repeatedly reset to safe state
• Enough debugging code left in that the problem could be resolved,

and new code uploaded

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Case Study: QNX

• Pure microkernel system
– Many optional components, scales for 12kbytes to run on high

end SMP machines with gigabytes of memory

• Native support for threads with a single address space
– Memory protection optional

• Message passing abstraction for inter-task communication
– Very efficient, due to single address space
– Tasks inherit priority of the messages
– Messages can be blocking, variable sized, or fixed size non-

blocking

• Network stack, TCP/IP
• Full GUI, web browsers, Java, etc

• Focus on real time embedded, but user-facing, systems

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Case Study: Psion/Symbian

• Psion series 5mx – precursor to Symbian mobile phones
• 16M RAM, 16M ROM
• 36MHz ARM710 processor
• Preemptive multitasking, GUI, C++
• Software: agenda, word processor, spreadsheet,

address book, email, web browser, calculator, jotter, sketch,
voice notes, Java

• Runs for ~1 month on 2 AA batteries
• Mine has run for almost 5 years without rebooting…

– Small, efficient, power-aware and robust code

• Focus on telephony and soft real time systems
– Often run under a hard real time OS using a two-level

scheduler

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Summary

By now you should…
• Be thinking about the system issues, and how features that

improve general purpose performance hinder real time jobs
• Be thinking about the constraints on embedded systems,

and differences in how they are engineered
• Know a little about different systems that are available

Tomorrow: summary and overview of the module

	Low-level Programming
	Lecture Outline
	Administrivia
	Programming Assignment
	Programming Assignment: Lessons to Learn
	Interrupt and Timed Task Latency
	Memory Protection/Context Switch Overhead
	Memory Protection
	Virtual Memory: Address Translation
	Virtual Memory: Locking and Paging
	Memory Leaks and Garbage Collection
	What is a Small System?
	Effects of Cache
	Power, Size and Performance Constraints
	System Longevity
	Case Studies
	Case Study: VxWorks
	Case Study: QNX
	Case Study: Psion/Symbian
	Summary

