
Real-time on General Purpose Systems

Colin Perkins
http://csperkins.org/teaching/2003-2004/rtes4/lecture17.pdf

Reading for this lecture: chapter 10

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Programming Assignment

A few questions raised yesterday:
• If the timing graph for one minute is linear and shows little

of interest, look at a smaller segment
• Discuss both the long-term and short-term measures
• Expecting relatively short write up: a page or so, plus the

graphs is sufficient
• In addition to commenting on what you see in the graphs,

don’t forget to answer the question: do the systems tested
have sufficiently accurate timing to use in a VoIP system?

Due 5pm on Friday, drop box in the usual place.

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Lecture Outline

• Scheduling tasks with temporal distance constraints
• Issues with real-time on general purpose systems

– Flexible computation
– Approaches to scheduling
– Implementation strategies

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Tasks with Temporal Distance Constraints

Network delays

Audio buffer

• Lip synchronisation is a common operation in multimedia
applications

• Audio and video decoding must complete within a short
period of time, or the lip-sync is broken

• An example of tasks with temporal distance constraints

Sender Synchronisation error

Video buffer

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Tasks with Temporal Distance Constraints

• Assume a task Ti comprises a set of jobs Ji,k for k = 1, 2, …
• The first job, Ji,1, is released at time φi

• Each subsequent job, Ji,k+1 where (k≥1), becomes ready when
its predecessor, Ji,k, completes

• The finish time of job Ji,k is denoted by fi,k

• The task has a temporal distance constraint, Ci, if:

fi,1 – φi ≤ Ci (Initial job)

fi,k+1 – fi,k ≤ Ci for k = 1, 2, … (Later jobs)

⇒ Jobs must complete within time Ci of their predecessor

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Distance Constraint Monotonic (DCM) Scheduling

• Can schedule tasks to explicitly meet distance constraints if
appropriate
– If you care about inter-job timing, as well as each job meeting

its deadline
– Jobs not only meet deadlines, they occur with Ci of the actual

completion time of an earlier task

• Use a fixed priority scheduling algorithm, similar to deadline
monotonic: Distance Constraint Monotonic scheduling

• Two elements: priority assignment and job separation
– Assign task priorities monotonically according to distance

constraint
• Smaller the distance constraint of task Ti, higher the task’s priority
• Jobs run with the fixed priority of the task to which they belong

– Provide separation between jobs to allow low priority tasks to
run and meet their constraints

• When a job completes, delay it’s successor as long as possible, to
allow jobs from lower priority tasks to run

• Improves schedulability

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Distance Constraint Monotonic (DCM) Scheduling

• Job Ji,k+1 is released at time ri,k+1 = fi,k + Ci – Wi

• The delay Ci – Wi is the separation constraint, chosen to
ensure that jobs complete and just meet their temporal
distance constraint

• Calculate maximum response time Wi iteratively as follows:
– Find maximum response time W1 of highest priority task T1

– For each Ti for i>1, find Wi after deriving a DCM schedule for all
higher priority tasks, assuming all tasks are released at time 0
(worst case response time, when all tasks start at once)

• Assumption: Wi≤ Ci

– otherwise distance constraints will not be met

• Once released, job is scheduled according to task priority
– Might not execute immediately…

Finish time of
previous job

Temporal
Distance
Constraint

Maximum response
time of jobs in task

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Schedulability of DCM

• Define density of a task, Ti, with execution time ei and
temporal distance constraint Ci is

• Density of the system

• Assume:
– distance constraints are harmonic: longer constraints are

always integer multiples of shorter
– separation constraint as previously described

• Theorem: the system is schedulable and meets temporal
distance constraints if ∆≤1

• Proof: the system devolves into a rate monotonic schedule
with period Ci

i

i
C
e

i =δ
∑ =

=∆
n

i i1
δ

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Schedulability of DCM

• If we relax the system definition to have arbitrary temporal
distance constraints, it becomes difficult to prove schedule
correct

• Can transform such a system into one with harmonic
temporal distance constraints through the specialization
operation
– Given a system of tasks T1, T2, …, Tn with distance constraints

C1, C2, … Cn the specialization operation transforms it into a set
of accelerated tasks

– The accelerated tasks T1’, T2’, … Tn’ have distance constraints
C1’, C2’, …, Cn’

– Where:
• The execution time of Ti’ equals the execution time of Ti

• The distance constraint Ci’ ≤ Ci

• The new distance constraints are harmonic

– Tighten the distance constraints, reducing the schedulable
utilisation of the system, but allowing proof of schedulability

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Temporal Distance Constraints and DCM

• Some applications care about the time between consecutive
jobs in a task

• Can schedule these using the Distance Constraint Monotonic
algorithm
– Similar to deadline monotonic scheduling
– Ensures actual completion of jobs within fixed period of the

previous job in the task, in addition to meeting deadline

• Can often arrange rate monotonic schedules or cyclic
executives to meet the temporal distance constraints
without special scheduling

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Real-time on General Purpose Systems

• Although RTOS are desirable, many real-time systems are
built using general purpose operating systems

• Examples running on standard PC hardware:
– Internet telephony; Streaming audio and video
– DVD player
– CD burner

• Operating system may provide limited real-time support
– POSIX scheduling extensions, or similar

• …but not engineered for robust real-time operation, with
many sources of unpredictability
– Virtual memory and/or disk activity
– Limited timer resolution
– Limited scheduler granularity

• Need to engineer applications around these constraints
– Consider how to make your application flexible

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Flexible Computation

• The ability to trade-off, at run time, quality of results for the
amount of time and resources used to produce those results

• As a system moves into overload,
it gracefully degrades rather than
suddenly failing

• Assumption: a timely result of poor
quality is better than a high quality,
but late, result

• Examples:
– Multimedia: a fuzzy picture is better than no picture
– Air traffic control: prefer system to keep working, with error

bars, than to fail completely on overload
• A timely warning of collision, with estimated location better than an

exact location, delivered too late to avoid collision

Load

A
cc

u
ra

cy

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Implementing Flexible Computation

• Jobs have an optional component and a mandatory part
– If sufficient resources, both mandatory and optional parts

complete; a precise result
– If limited resources, the optional component is discarded,

giving an imprecise result

• How to implement?
– Sieve method
– Milestone method
– Multiple version method

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Sieve Method

• A flexible task comprises a mixture of mandatory and
optional jobs

• In times of overload, some optional jobs are discarded in
their entirety

• Example: Encoding MPEG video

Time

Intermediate (predicted) frames Full frame

• Can be flexible by either:
– stop encoding predicted frames ⇒ reduced frame rate
– delay encoding full frame ⇒ reduced bandwidth, error

tolerance

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Milestone Method

• The system regularly checkpoints the result of the optional
job as a set of milestones

• When the deadline is reached, the job terminates and the
latest milestone is retrieved

• A monotone is a job where the optional component can be
stopped at any time, and the quality of the result always
increases with longer execution
– Iterative numerical computation
– Iterative statistical computation
– Layered video encoding

• A monotonic job makes the scheduling decision easier, since
longer execution, after the mandatory part, always improves
quality
– Otherwise needs watch result quality, to know when to stop

Time

A
cc

u
ra

cy

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Multiple Versions

• The flexible job is implemented in multiple versions:
– Primary is high quality, but has a larger execution time and

resource usage
– Alternates are lower quality, but execute quicker or use less

resources

• The scheduler must make an a-priori decision on which
version to execute, based on load at the start of the job
– Requires more intelligence in the scheduler than sieve or

milestone methods

• Little gain from having more than one alternate

Primary

Alternate 1

Alternate 2

Scheduling
Decision

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Flexible Workload Model

Definitions:
• To schedule flexible computations, need a workload model
• As usual a task, T, is comprised of a series of jobs Ji

• Each flexible job, Ji, is logically decomposed into a chain of
two jobs, Mi and Oi which are the mandatory and optional
components

• The release times and deadlines of Mi and Oi are the same
as Ji but Oi is dependent on Mi

• Execution time e = em + eo

• A generalisation of the model we’ve used previously:
– non-flexible jobs scheduled as-if eo is zero

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Flexible Workload Model

• Jobs are scheduled so mandatory tasks meet their deadline:
– A schedule for a flexible application is valid if Ji is allocated

processor time at least equal to em and at most equal to e
– The schedule is feasible if each job is allocated at least em units

of processor time before its deadline
– Exactly the same definitions we saw in lecture 2 for non-flexible

tasks, adapted to allow for eo

• Optional components of each job execute if there is time
before the deadline
– An optional job completes it if receives eo before the deadline
– An optional job never executes beyond its deadline

• May be terminated, and revert to the last milestone
• May be pre-empted, and continue to execute at low priority if killing

the job would leave the system inconsistent

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Flexible Jobs with 0/1 Constraints

• If the sieve or alternate methods are used, there is no point
running part of an optional component
– The optional component has a 0/1 constraint

• Either it runs to completion, or not at all
• Admission control for jobs

• For optional jobs according to the sieve method:
– When the optional jobs becomes eligible to run, make a choice

to run the job based on available execution time

• For optional jobs according to the alternate method:
– Model the alternates as mandatory and optional parts
– Let em be execution time of the alternate, eo be the difference in

execution time between primary and alternate
– After scheduling the mandatory part for em, the optional part is

scheduled. If eo available before its deadline, this corresponds
to the primary version being scheduled. Otherwise, only the
alternate can be scheduled

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Dependent Jobs

• Assumption of the previous: the execution time of a job is
independent of the previous jobs

• In some systems, saving time in an early job – by skipping
its optional component – makes a later job in the task take
longer
– Often occurs if errors are cumulative: eventually need to run

the full computation periodically, to bring the error back to an
acceptable level

• Need to take this into account when building the schedule,
by modelling both branches of the task graph

Optional part
executes to

meet deadline

Later task
takes longer
to execute

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Criteria of Optimality

• Correctness: finding a feasible schedule that ensures all
mandatory jobs complete

• Quality of result: try to fit in as many optional jobs as
possible, to reduce the error in the result
– Measure the error according to some domain specific metric

• Can be difficult to characterise…

– Clearly desirable if the error function is convex
• May influence choice of algorithm, for milestone based jobs

E
rr

o
r

Processor
time

concave
linear

convex

em e

Optional component
runs to reduce error

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Criteria of Optimality

Try to reduce the error in the result… which error:
• The sum of the total errors for all jobs?
• The maximum error for an individual job?
• The average error for all jobs?

Heavily domain dependent…

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Scheduling Flexible Applications

• Algorithms for scheduling flexible applications can be either
on-line or off-line

• Given a set of mandatory and optional tasks, an off-line
algorithm aims to derive a static schedule that minimises
some particular error metric
– Can be executed during design, with hard coded schedule

• Undesirable, system during design the system can be engineered to
meet all deadlines

– Can be executed at run-time, as a result of a mode change that
causes more tasks to run

• Off-line algorithms typically heavy-weight, so this is a rare event on
a significant reconfiguration of the system

• Generally reduces to a linear programming or constraint
optimisation problem

• Is NP-hard, and unrealistic, for real-world error functions
– 0/1 constraints
– non-linear error functions

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Scheduling Flexible Applications

• All useful scheduling algorithms for flexible applications use
heuristics or are otherwise imprecise

• Two general approaches: mandatory first and slack stealing
• Mandatory first algorithms schedule the mandatory parts of

the system with higher priority than the optional parts
– Use a fixed priority algorithm, like rate monotonic, to schedule

the mandatory parts
– Then schedule optional parts to minimise error:

• dynamic least-attained-time suitable if error functions are convex,
since diminishing returns for tasks that have attained most time

• dynamic best-incremental-return suitable if knowledge of error
functions, since run the task which will most reduce the error

– If don’t know error functions (common case):
• Rate monotonic or earliest deadline schedule of optional parts
• Earliest deadline always achieves zero average error, if possible

• Slack stealing run optional tasks in slack time of mandatory
tasks, dynamically according to EDF

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Implementation Strategies

• Flexible applications are only useful if a system can be
overloaded

• Typically only useful on soft real time systems, generally
running on a general purpose operating system
– Otherwise, engineer the system to avoid overload

• Implication: don’t have good scheduling support
– Given knowledge of current time and deadline, application will

decide to shed work
• sieve, incremental with milestones, alternate algorithm

– Very much heuristic driven, rather than explicitly scheduled
– Inherently imprecise, and difficult to reason about

• If you’re building these systems:
– program defensively
– measure behaviour
– adapt accordingly, based on domain specific heuristics and

error functions

C
op

yr
ig

h
t

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Summary

By now, you should know…
• Scheduling tasks with temporal distance constraints
• Issues to consider when running on a general purpose

system, and when designing a flexible application

	Real-time on General Purpose Systems
	Programming Assignment
	Lecture Outline
	Tasks with Temporal Distance Constraints
	Tasks with Temporal Distance Constraints
	Distance Constraint Monotonic (DCM) Scheduling
	Distance Constraint Monotonic (DCM) Scheduling
	Schedulability of DCM
	Schedulability of DCM
	Temporal Distance Constraints and DCM
	Real-time on General Purpose Systems
	Flexible Computation
	Implementing Flexible Computation
	Sieve Method
	Milestone Method
	Multiple Versions
	Flexible Workload Model
	Flexible Workload Model
	Flexible Jobs with 0/1 Constraints
	Dependent Jobs
	Criteria of Optimality
	Criteria of Optimality
	Scheduling Flexible Applications
	Scheduling Flexible Applications
	Implementation Strategies
	Summary

