Introduction to Real-Time Communications

Colin Perkins

http://csperkins.org/teaching/2003-2004/rtes4/lecture14.pdf

Reading for this week: Chapter 11

Lecture Outline

- Administrivia and programming assignment
- Modelling real-time communications
- Timing properties of networks
- Predictability and the need for resource reservation
- Examples
 - Controller area networks
 - IP and the Internet

Administrivia

- The strike: lectures will **go ahead as normal** this week
 - Wednesday: Quality of Service for Packet Networks
 - Thursday: Real-Time Communication on IP Networks

The Programming Assignment

- Due at 5pm on Friday 12th March
- Hints:
 - Consider using nanosleep() and select() with a timeout
 - Consider using send() and recv() with sock_DRAM sockets
 - Concentrate on the network, threading and timing code
 - Store data in simple files, use something like gnuplot or Excel to plot timing graphs
 - Think about, and discuss, the timing graphs you plot

• Don't:

- Waste time giving your programs a nice user interface
- Waste time writing your own graph plotting routines

Real Time Communications

- In most data communications, it is important that the data arrives reliably
 - Would like it to be fast, but prefer reliable
 - E.g. web, email, etc.
 - Often characterised as elastic applications
- In real time communication it is important that the message arrives in a timely manner
 - Timeliness may be more important than reliability
 - Messages may have priority
- Examples:
 - A "drive by wire" system in a car
 - Packet voice and telephony applications

Example: Drive by Wire

- All data must be delivered reliably
 - Is bad if you turn the steering wheel, and nothing happens
- Commands from control system have highest priority, then sensors and actuators, then control inputs
 - Anti-lock brakes have a faster response time than the driver, so prioritise to ensure the car doesn't skid
- Network must schedule and prioritise communications

Example: Packet Voice

- Voice is digitised and sent as a sequence of packets
 - Constant spacing, every 10-30ms depending on codec
- Strict timeliness requirement
 - Mouth to ear delay needs to be less than approximately 150ms
 - Packets must be played out with equal spacing
- Relaxed reliability requirement
 - Some small fraction of packets can be lost, and just sound like crackles on the wire; most need to arrive
- Emergency calls may have priority

Modelling Application Traffic

- Assume that messages are split into "packets" for transport through the communications network
- Isochronous (synchronous) flows
 - Produced and consumed in a continuous basis
 - Messages are generated and consumed by tasks according to some schedule
 - Can be generated by periodic tasks
 - Fixed rate flows (e.g. sensor data, speech)
 - Characterise by tuple (P_i, e_i, D_i) : period (inter-packet spacing), message length, reception deadline
 - Can be generated by sporadic tasks
 - Variable rate flows (e.g. MPEG-2 video, control traffic)
 - How to characterize? Leaky bucket, etc
 - Generally require some performance guarantee
- Aperiodic (asynchronous) messages
 - No deadline, best effort delivery, but want to keep delays small
 - Characterise by average delivery time

General Model of Hosts and Network

Modelling Sources of Timing Variation

- Ideally the network will deliver messages to the receiver with no delay, preserving the timing
- In reality there is:
 - Queuing delay at sender
 - Network is not always ready to accept a packet when it becomes available; data may be queued if it's produced faster than the network can deliver it
 - Queuing delay at receiver
 - Application is not always ready to accept a packet when it arrives from the network
 - Network may deliver data in bursts
 - Network transit time
 - Fixed propagation delay

Performance Objectives and Constraints

- Have seen the types of traffic produced, and the sources of timing variation in the network
- What are the effects of these? Interactions?
 - Throughput and delay
 - Jitter and buffer requirements
 - Miss rates, when jitter causes a deadline to be missed
 - Packet loss and invalid rates
- If we can characterise, we can schedule communications

Throughput and Delay

- The throughput (or rate) is a measure of the number of packets that the network can deliver per unit time
 - Throughput may be average or instantaneous
- The delay is the time taken to deliver a packet across the network
 - There will be a fixed minimum delay, due to propagation time of the signal across the network medium
 - Ultimately limited by the speed of light
 - Significant for long distance communications
 - There will be variation due to elements along the network path
 - Queuing delay at sender
 - Queuing delay at receiver
 - Affect end-to-end delay as seen by the application
- The delay jitter is the variation in the delay

Throughput and Delay

- Delay matters for some applications, but not others
 - Interactive applications need low delay
 - Telephony, video conferencing and games
 - Control applications often need low delay in the sensor ⇒ controller
 ⇒ actuator loop
 - Non-interactive applications are less delay sensitive
 - Video on demand, TV and radio distribution
- Throughput typically very important
 - Need to sustain a certain rate, to support the application
 - May wish to use scheduling algorithms to prioritise which packets are to be sent, and guarantee throughput

Jitter and Buffering Requirements

- Delay jitter is the variation in delay across a network path
 - For isochronous traffic, often talk about absolute value and standard deviation of packet inter-arrival time
 - Assumes we can characterise the jitter see examples later
- Jitter will affect the buffer requirement
 - Talked earlier in the module that we gain no advantage in completing a job early
 - Indeed, a periodic or sporadic message that is delivered early may be problematic, since it must be buffered until the destination is ready to process it
 - Larger jitter implies more buffering is needed
 - Used to be a big problem for TV set-top-box manufacturers, since memory was expensive
 - Many systems are designed to keep not only latency, but jitter as small as possible

Jitter and Miss Rate

- System may have limited buffering, due to lack of memory or application timing requirements
- Packets may arrive late due to jitter
- Fraction of packets lost is the miss rate
 - For soft real-time systems only!

Loss

- Throughout, we have assumed that no job is ever blocked or lost because there is no space in the ready queue when it becomes available for execution
- Usually valid for operating systems and LAN communication
- Not valid for many wide-area communication systems
 - Too expensive to provision buffering in all routers
 - Provision for typical load plus a safety factor, not worst case
- Queues may overflow, hence packets are dropped
 - The **loss rate** gives the fraction of packets that are dropped
 - Patterns of loss may also be important
 - Packet scheduling algorithms affect loss pattern
- Packets may also be dropped due to corruption or other errors
 - Not discussed further, since not affected by scheduling

Copyright © 2004 Colin Perkins http://csperkins.org/

Characterisation of Networks

- Implication: for real time communication, it is necessary to characterise the timing behaviour of a network
 - Prove/demonstrate that throughput, latency, and jitter are within appropriate bounds for the application
- Some network technologies allow this, others do not
 - Examples: CAN, Ethernet

Example: Controller Area Networks

- Shared serial bus, send at 1Mbps, maximum bus length is 50 metres
- All stations hear transmissions within a fraction of a bit time
- Connections wired together as a logical AND function
 - Stations only see a 1 bit on the bus if all transmitters are sending a 1 bit
- Packets start with an ID, then control and data
- Slotted CSMA/CD: wait until start of slot, then begin to send with the ID field, but:
 - Stop if you hear a 0 on the bus when you are sending a 1
 - ⇒ Packet with smallest ID is sent first; priority network protocol

Example: Controller Area Networks

- Widely used in automotive systems, for example
- Allows communications to be scheduled using the fixed priority scheduling algorithms we have discussed
 - Look at the communications patterns, assign deadlines to each message exchange
 - Use deadline monotonic scheduling to assign priorities
 - 11 bit ID field, implies 2048 priority levels
 - Treat sporadic messages as periodic messages, according to worse case assumptions
 - Waste capacity, but ensures schedulability
 - The CAN will not pre-empt a message once it has started
 - Low utilisation, but can prove that all messages will be delivered before their deadlines and calculate jitter
 - Standard schedulability analysis, as for any set of jobs
- EDF scheduling has been suggested as an alternative, with better utilization

Example: Ethernet

- Recall that Ethernet uses CSMA/CD with exponential backoff
 - Try to transmit, listening for collision
 - If a collision occurs, stop sending, wait before retry
 - Random binary exponential back-off
 - After *i* collisions back-off by up to 2^{*i*} slots, randomly chosen
- Potentially unbounded delay on busy network
 - Cannot schedule transmissions to avoid collision
- No prioritisation of messages

Implications:

- Cannot easily reason about timing properties
- Difficult to schedule messages to ensure timely delivery

Extension to Packet Switched Networks

Links have constant **propagation** delay

Switches are **output buffered** with packets queued for transmission if the output link is busy

Choice of job scheduling algorithm on the output link is critical for real time traffic – tomorrow!

Timing Recovery

- Consider the throughput, latency and jitter of the network with different scheduling algorithms in the routers
- Want to minimize the jitter and latency, while keeping sufficient throughput

Throughput, Latency and Jitter

- Should be clear that throughput and latency depend on the capacity of each link, and on the queuing delay at each hop
- Queuing delay will vary based on the traffic
 - Variation in the throughput of the real-time flow may cause queues to build up at bottleneck links

- Cross traffic will also affect queue occupancy
- Throughput may be limited by an intermediate link, which cannot be directly observed by sender and receiver
 - How to tell if the throughput is limited by the network, or by other traffic using the network?
 - Cannot know if there is capacity, unless requirements are signalled in advance

Congestion and Loss

- Implication: not only may we cause overloads and congestion, so might the cross traffic
 - Temporary congestion will cause queuing delays
 - Persistent congestion will result in queues that stay full, hence packets may be lost
- How to avoid this?
 - Control the amount of traffic at a bottleneck link
 - Applications need to signal their requirements
 - Network needs to perform admission control
 - Or prioritise traffic, to give preference to important flows
 - What scheduling algorithm to use?
 - May allow real-time traffic, but discard best effort data traffic when the network is overloaded

Clock Skew and Synchronisation

- In a packet switch communication system, it is common that sender are receiver are widely distributed
- As a result, the sender clock may not be synchronised with the receiver clock and clock skew may occur
 - Results in a steady increase or decrease in the inter-packet spacing observed at the receiver
- This is problematic for isochronous applications:
 - Queues can build up in the receiver or in intermediate systems
 - Eventually buffer space will be exceeded
 - Some data will be dropped
 - Queues can empty in the receiver
 - Initial queue created, to buffer for jitter
 - Sender is slightly slower than receiver
 - Queue slowly empties, eventually there is no data to process

Example: IP Networks and the Internet

- The Internet is an example of a packet switched network with uncontrolled queuing behaviour
 - Different hops use link layers with different timing behaviour
 - Ethernet
 - SONET
 - ATM
 - DSL
 - Different queuing algorithms in routers
 - FIFO with drop-tail
 - FIFO with RED
 - Weighted fair queuing
 - Weighted round robin
- Observed performance depends on the underlying network, the route taken, and the characteristics of the cross traffic
 - Difficult to predict in advance, unless you control the network

Structure of the Internet

- Traffic passes through many hops, which can be maintained by different ISPs. How is the packet timing affected?
- Do you have an SLA with each?

Sample Internet Measurements

- Tests using a multimedia application running between the University of Oregon and University College London
 - An Internet TV station, re-broadcasting NASA TV
 - Measurements taken in 1999 and 2000
 - Recent measurements to less well connected sites look like these
 - Recent measurements in Europe, US and Japan often show less variation due to improvements in capacity
 - Although many DSL and cable modem providers have poor quality networks, and measurements look a similar to these
- Observed the audio traffic at the IP layer
 - Constant rate (isochronous) traffic source
 - Packets generated by a periodic task every 20ms
 - Desired behaviour is constant arrival rate, no jitter and no clock skew

Throughput Variation in an IP Network

Blue points show a 1 second average Red line shows a 10 second moving average

Jitter in an IP network

Track jitter from queuing delays over almost 3 hours Downward trend due to clock skew

Jitter in an IP network

Magnification of first 4 minutes of the previous graph Influenced by overlapping periodic processes

Jitter in an IP network

Packet Timing Graph

- Can visualise all these effects using a packet timing graph
- Plot transmission time versus arrival time

Predictability of the Network

- Should be clear that timing of an IP network may be roughly characterised, but is not sufficiently predictable for hard real time applications
- Is this a property of all packet networks? No, it occurs because:
 - Uncontrolled service discipline; no jitter or rate control
 - No admission control/connection establishment
- Other packet networks may be different:
 - ATM and MPLS have a connection establishment phase to allow resources to be reserved for a new flow
 - RSVP allows you to reserve resources on an IP network
- This is the difference between best effort networks, and networks that provide enhanced quality of service (QoS)
- When using packet networks for real time communication, important to either characterise the best effort network or use appropriate QoS

Summary

By now, you should know:

- What is real time communication
- Factors that affect real time communication
- Examples of networks and their timing properties

Tomorrow, we'll talk about resource reservation and QoS

Copyright © 2004 Colin Perkins http://csperkins.org/