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Lecture Outline

• Resources and Resource access control
– Synchronisation and Locking
– Implementing priority inheritance 
– Simpler priority ceiling protocols
– Priority ceiling protocols for dynamic priority systems

• Messages, Signals and Events
– Message queues and priority
– Signals

• Clocks and Timers
– Interval and watchdog timers
– Sources of inaccuracy
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Resources and Resource Access Control

• A complete system comprises both tasks and resources
– System has ρ resources named R1, R2, …, Rρ

– Each resource Rk comprises νk units

• Tasks compete for the use of resources
– Resources are used in a mutually exclusive manner
– Assume a lock-based concurrency control mechanism
– To use nk units of resource Rk a task executes a lock to request 

them L(Rk, nk)
• If the lock fails, the requesting task is blocked until the resource is 

unlocked

– When the task has finished with the resources, it unlocks them 
U(Rk, nk); Resources are released in LIFO order

– The segment of a task between L(Rk, nk) and U(Rk, nk) is a 
critical section

• Tasks contend for a resource if one requests a resource 
another has been granted
– A resource access control protocol arbitrates between tasks
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Resources and Resource Access Control

• What types of resource are available?
• How do you lock resources?
• How is the resource access control protocol implemented?

– A priority inheritance protocol
– A priority ceiling protocol
– Others?
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Resource Types and Locking

• Program objects and data structures
• Files
• Devices
• Network interfaces
• System stack space

Access arbitrated
by the operating
system

Need to be locked by
applications to ensure
exclusive access

Semaphores

MutexesProvided by POSIX
and/or by real-time
operating systems

Condition Variables
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POSIX Semaphores

int sem_init(sem_t *semloc, int inter_process, unsigned init_val);
int sem_destroy(sem_t *semloc);
int sem_wait(sem_t *semaphore);
int sem_trywait(sem_t *semaphore);
int sem_post(sem_t *semaphore);

• Memory based version of POSIX semaphores, lets you 
embed a semaphore within an object:

struct my_object {

sem_t   lock;
char   *data; // For example…
int     data_len;

}

struct my_object *m = malloc(sizeof(my_object));
sem_init(&m->lock, 1, 1);
…

• Generic semaphore; no special real-time features
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POSIX Mutexes

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

int pthread_mutexattr_setprotocol(pthread_mutex_attr_t *attr, int  protocol);
int pthread_mutexattr_getprotocol(pthread_mutex_attr_t *attr, int *protocol);

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

• As with semaphores, a mutex is embedded in an object at a 
location of the programmers choosing

• Lets you lock access to that object/resource
– Need to manually lock and unlock the resource
– Compare to Java synchronised methods, classes
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POSIX Mutexes and Resource Access Control

• A useful feature of POSIX threads is the ability to specify a 
resource access protocol for a mutex

• Use pthread_mutexattr_setprotocol() during mutex creation
– PTHREAD_PRIO_INHERIT

• The priority inheritance protocol applies when locking this mutex

– PTHREAD_PRIO_PROTECT
• The priority ceiling protocol applies when locking this mutex

– PTHREAD_PRIO_NONE
• Priority remains unchanged when locking this mutex

• Useful in conjunction with real-time scheduling extensions
– Allow implementation of fixed priority scheduling with resource 

access control protocols
– Control priority inversion

• If the priority ceiling protocol is used, can adjust the ceiling
to match changes in thread priority:
– pthread_mutexattr_getprioceiling(…)
– pthread_mutexattr_setprioceiling(…)
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POSIX Condition Variables

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex

struct timespec *wait_time);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

• Combine a condition variable with a mutex to wait for a 
condition to be satisfied:

lock associated mutex
while (condition not satisfied) {

wait on condition variable
}
do work
unlock associated mutex
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Implementing Priority Inheritance

• How to implement priority inheritance for mutexes within an 
operating system?

• Assume that the operating system provides two functions:
– inherit_pr(TH)

• Called when a thread is denied a resource, R, and becomes blocked
• Causes all threads directly or indirectly blocking TH to inherit TH’s

priority, increasing their priority to πTH
– They inherit TH’s priority through resource R

• Assume: current priority of all threads blocking TH is lower than 
TH’s priority

– True if there is one processor, deadlock cannot occurs, and a thread 
holding a resource never yields the processor

– restore_pr(R, TH)
• Called when a thread, TH, releases a resource, R. 
• The priority of TH is restored to πr

These are used by a resource manager within the system to 
raise and restore thread priorities as resources are acquired 
and released
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inherit_pr()

• The inherit_pr() function looks up the thread TH1 that is 
holding R

• That may be blocked on another resource, R1

• Follow the blocking chain back to the thread THn, that is 
ready to run at a lower priority than TH

TH R TH1 R1 TH2 R2 THn

Example: Blocking chain from TH to THn

• Requires:
– Each resource has a pointer to the thread holding that resource 

(the owner pointer)
– In the TCB of each blocked thread, there is a pointer to the 

resource for which the thread waits (the wait-for pointer)
– The scheduler is locked when following the blocking chain

• For every thread found, change it’s priority to πTH
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restore_pr()

• A thread may hold multiple resources at the same time
– As a result, it may inherit a number of different priorities as 

other threads block and contend for these resources

• Need historical information on how a thread inherited its 
current priority to ensure it is restored to the correct priority 
when releasing a resource
– Maintained in the TCB of each thread as a linked list of records, 

the Inheritance Log, one for each resource the thread holds and 
through which it has inherited some priority

– When restore_pr(R, TH) called it searches the inheritance log of 
TH for the record of R. If it exists, compute the new thread 
priority using the inheritance log and delete the record of R.
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Implementing Priority Inheritance

• Should be clear that implementing priority inheritance and 
restoration is a heavy-weight operation
– Many operations on tasks and resources
– Basic priority ceiling protocol has similar issues

• Needs to look at all the resources

• Would like a less complex alternative
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The Stack as a Resource

• One resource we have not considered is the memory used 
by the run-time stack

• In the usual case, each tasks has it’s own stack
• This is wasteful, since memory must be reserved for the 

maximum stack depth needed, and can fragment memory
• In systems that have limited memory, would like all tasks to 

share a common stack area
– Claims of 90% storage saving have been made

• Stack space allocated in a last-in-first-out manner
– When task J executes its stack space is at the top of the stack
– If pre-empted by another job, K, the pre-empting job will have 

space in the stack above J
– Clearly J can only resume after all tasks holding space in the 

stack above its space complete, free their stack space, and 
leave J’s space on the top of the stack again

• Restricts feasible schedules; tasks have ordering constraints



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
The Stack Based Priority Ceiling Protocol

• Leads to a modified version of the priority ceiling protocol: 
the stack-based priority ceiling protocol

• Use terms:
– Π(t) current priority ceiling
– Ω non-existing lowest priority level

• Defining rules:
– Ceiling: When all resources are free, Π(t) = Ω; Π(t) updated 

each time a resource is allocated or freed
– Scheduling: After a job is released, it’s blocked from starting 

execution until it’s assigned priority is higher than Π(t); non-
blocked jobs are scheduled in a pre-emptive priority manner; 
tasks never self-yield

– Allocation: Whenever a job requests a resource, it is allocated 
the resource

• The allocation rule looks greedy, but scheduling rule is not
• Simpler allocation and scheduling rules, compared to basic 

priority ceiling protocol
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The Stack Based Priority Ceiling Protocol

• When a job starts to run, all the resource it will ever need 
are free (otherwise the ceiling would be ≥ priority)
– No job is ever blocked once its execution has begun
– Implies low context switch overhead

• When a job is pre-empted, all the resources the pre-empting 
job will require are free, ensuring it will run to completion
– Deadlock can never occur

• Longest blocking time provably not worse than the basic 
priority ceiling protocol
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Comparison: Basic and Stack Based PCP

Example task set with resources (from lecture 10):

[Blue; 4]560J5

[Red; 4 [Blue; 1.5]]462J4

324J3

[Blue; 1]235J2

[Red; 1]137J1

Critical SectionsπieiriJob



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Comparison: Basic and Stack Based PCP

J1

J2

J3

J4

J5

J5 inherits priority
when other jobs 
block on access
to blue resourceBasic Priority Ceiling Protocol
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Comparison: Basic and Stack Based PCP

J1

J2

J3

J4

J5

Clear that context switches are
reduced; nothing finishes later,
but many tasks start later

Stack Based Priority Ceiling Protocol
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The Ceiling Priority Protocol

• A similar implementation is the ceiling priority protocol
• Defining rules:

– Scheduling:
• (a) Every job executes at its assigned priority when it does not 

hold any resource. Jobs of the same priority are scheduled on a 
FIFO basis

• (b) The priority of each job holding resources is equal to the 
highest of the priority ceilings of all resources held by the job

– Allocation: whenever a job requests a resource, it is allocated

• When jobs never self-yield, gives identical schedule to the 
stack-based priority ceiling protocol
– Essentially a reformulation of the stack based priority ceiling 

protcol

• Again, simpler than the basic priority ceiling protocol
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Choice of Priority Ceiling Protocol

• If tasks never self yield, the stack based and ceiling priority 
protocols are a better choice
– Simpler
– Reduce number of context switches

• Stack based can be used to allow sharing of run-time stack, 
to save memory resources

• The ceiling priority protocol supported by the Real-Time 
Systems annex of Ada95
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Resource Control in Dynamic Priority Systems

• Priority ceiling protocols described to date assume fixed 
priority scheduling

• In a dynamic priority system, the priorities each periodic 
tasks change over time, while the set of resources required 
by each task remains constant
– As a consequence, the priority ceiling of each resource may 

change over time

• If a system is job-level fixed priority, but task-level dynamic 
priority, the basic priority ceiling protocol can still be applied
– Each job in a task has a fixed priority once it is scheduled, but 

may be scheduled at different priority to other jobs in the task
• Example: Earliest Deadline Scheduling

– Update the priority ceilings of all jobs each time a new job is 
introduced; use until updated on next job release

– Very inefficient: O(ρ) complexity for ρ resources each time a 
job is released

• Stack based priority ceiling protocol can also be used



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Messages, Signals and Events

• In addition to controlling access to resources, tasks often 
need to communicate information to other tasks

• Can be implemented using a shared data structure – a 
resource – that is managed as described previously
– Example: a queue protected by a mutex and condition variable
– Requires synchronisation between tasks

• May wish to communicate with another task without an 
explicit synchronisation step
– Send another task a message
– Signal another task that an event has occurred
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POSIX Message Queues

Create and destroy message queues:
mpd_t mq_open(char *mqname, int flags, mode_t mode, struct mq_attr attrs);
int   mq_close(mpd_t mq);
int   mq_unlink(char *mqname);

Send and receive messages:
int  mq_send(mpd_t mq, char *msg, size_t msgsize, unsigned msg_prio);
int  mq_receive(mqd_t mq, char *msg, size_t buflen, unsigned *msg_prio);

Set and get attributes:
int  mq_setattr(pqd_t mq, struct mq_attr *newattr, struct mq_attr *oldattr);
int  mq_getattr(mpd_t mq, struct mq_attr *attrbuf);

Register for notifications:
int mq_notify(mqd_t mq, struct sigevent *notification);
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POSIX Message Queues

• Message queues are usually blocking:
– mq_send() will block until there is space in the queue to send a 

message
– mq_receive() will delay the caller until there is a message

• Can be set to non-blocking, if desired
• A receiver can register to receive a signal when a queue has 

data to receiver, rather than blocking

• Messages have priority, and are inserted in the queue in 
priority order

• Messages with equal priority are delivered in FIFO order



C
op

yr
ig

h
t 

©
 2

0
0
4
 C

ol
in

 P
er

ki
n
s 

h
tt

p
:/

/c
sp

er
ki

n
s.

o
rg

/
Message Based Priority Inheritance

• A message is not read until the receiving thread executes 
mq_receive()

• Problem:
– Sending a high priority message to a low priority thread
– The thread will not be scheduled to receive the message

• Solution: message based priority inheritance
– Assume message priorities map to task priorities
– When a task is sent a message, it provides a one-shot work 

thread to process that message
– The work thread inherits the priority of the message
– Allows message processing to be scheduled as any other job
– Supported by the QNX service providers and message queues
– Not supported by POSIX message queues

• Kludge: run a service provider at highest priority so it receives all 
messages immediately, then lower the priority to that of the 
message while processing the request
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Signalling Events

• Need a way of signalling a task that an event has occurred
– Completion of asynchronous I/O request
– Expiration of a timer
– Receipt of a message
– etc

• Many different approaches:
– Unix signals

• Event number N has occurred; no parameters; unreliable (non-
queued)

– POSIX signals
• Allow data to be piggybacked onto the signal (a void * pointer)
• Signals are queued, and not lost if a second signal arrives while the 

first is being processed
• Signals are prioritised

– Windows asynchronous procedure call and event loop
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Signalling Events

• Signals are delivered asynchronously at high priority
– As a result of a timer event
– As a result of a kernel operation completing
– As a result of action by another process

• High overhead
– Require a trap to the microkernel, context switch, etc

• Add unpredictable delay
– The executing process is delayed when a signal occurs, by the 

time taken to switch to the signal handler of the signalled task, 
run the signal handler, and switch back to the original task

• Work well for soft real time on general purpose systems
– Overheads and unpredictability small compared to the other 

issues of running on such systems

• May be better to use synchronous communication where 
possible in hard real time systems
– Easier to predict behaviour, since receiving the event can be 

scheduled
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Clocks and timers

• Systems provide a timer interface, to request an event is 
delivered…
– at a certain absolute time
– after a certain delay

• In POSIX:
int timer_create(clockid_t clock, struct sigevent signal, timer_t *timer);
int timer_settime(timer_t *timer, int flag, struct itimerspec *new_interval,

struct itimerspec *old_interval)

• Most systems support multiple timers, perhaps derived from 
different clocks
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Time Services

• The clock will have certain resolution, accuracy and stability
– Resolution and accuracy fixed, depend on hardware

• Resolution: minimum interval that can be distinguished
• Accuracy: is that interval correct? too large? too small?

– Stability depends on environment and hardware
• Is the accuracy constant?
• Does it depend on temperature or system load?

Tasks

Interrupt
Handler

Pending timer events
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Time Services

• Interrupt handler will have latency
– Depends on the number of pending timer events
– Decreases perceived accuracy of the clock

• Waking up the task receiving a timer event also has latency
• Both are non-deterministic, depending on system load

– On general purpose system, may be 10s of milliseconds
• Problematic for soft real time on general purpose systems

– Smaller on dedicated RTOS

Tasks

Interrupt
Handler

Pending timer events
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Watchdog Timers

• Most real time systems support a watchdog timer
• A high priority keep-alive timer
• Set to expire after a certain period
• Tasks regularly nudge the timer, to increase the expiry 

period
• If the timer expires, the system is assumed to have failed
• A high priority task is triggered to recover

– E.g. reboot the system; restart the failed task
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Summary

By now, you should know:
• Outline of POSIX synchronisation and lock facilities

– Mutex support for priority inheritance/priority ceiling protocol

• How to implement priority inheritance
• Simpler alternatives to basic priority ceiling protocol
• Using priority ceiling in dynamic priority systems
• Outline of POSIX messages queues

– Problem with message priority inheritance

• Outline of signals and timing services
– Sources of inaccuracy
– Normal and watchdog timers
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